Abstract
Key Word
The abbreviations used are:
RCC (renal cell carcinoma), MAGE (Melanoma antigen gene), CPTAC (Clinical Proteomic Tumor Analysis Consortium), TCGA (The Cancer Genome Atlas), OE (Overexpression), KD (knock-down), TEM (transmission electron microscopy), ChIP (Chromatin Immunoprecipitation), HCQ (hydroxychloroquine), CoIP (co-immunoprecipitation), IP (immunoprecipitation), Chx (Cycloheximide), WB (Western Blot), NEM (N-Ethylmaleimide), EBSS (Earle’s Balanced salt Solution), DAPI (4',6-diamidino-2-phenylindole), TSS (Transcription Start Site), TES (Transcription End Site), GDC (Genomic Data Commons), WCE (Whole cell extract)Introduction
Results
1: TRIM28 inhibits RCC cell proliferation

2: TRIM28 inhibits RCC cell proliferation through retarded autophagy

3: TRIM28 decreases autophagic gene expression through downregulating TFE3 protein level

4: TRIM28 promotes ubiquitinatin-proteasome-mediated degradation of TFE3
- Mascle X.H.
- Germain-Desprez D.
- Huynh P.
- Estephan P.
- Aubry M.

5: TFE3 localizes to RCC cell nucleus

6 TFE3 promotes RCC cell autophagy and proliferation

7: TFE3 recruits KDM6A to autophagic gene promoters

8: KDM6A promotes autophagic gene expression through H3K4 methylation

Discussion
1 TRIM28-TFE3-KDM6A axis regulates RCC cell proliferation and tumor growth

2 TRIM28 inhibits autophagy of RCC through TFE3
3 KDM6A is recruited by TFE3 for autophagic gene activation
Experimental Procedures:
Cell culture
Stable GFP-LC3 cell lines
Cell proliferation Assay
Colony- formation assay
Xenograft experiment
Western Blot
Immunofluorescence
Transmission Electron-microscopy
Realtime RT-PCR
Chromatin Immunoprecipitation (ChIP) and reChIP
Gene Knock-down
Gene knock-out
Overexpression or rescue expression with lenti-virus vector
In vivo Ubiquitination assay
In vivo Sumoylation assay
Co-immunoprecipitation assay
Densitometry analysis of Western Blot result
Analysis of ChIP-Seq data from GEO
Survival analysis and Kaplan-Meier plot
Analysis of GFP-LC3 or LAMP1 puncta
GSEA analysis
Statistical analysis
Data availability
Author contributions
Funding and additional information
Conflict of interest
Supplementary data
REAGENT or RESOURCE | SOURCE | IDENTIFIER |
---|---|---|
Antibodies | ||
Rabbit polyclonal anti- LC3A/B | CST | CAT# 4108; RRID:AB_2137703 |
Rabbit polyclonal anti- P62 | CST | CAT# 5114; RRID:AB_10624872 |
Mouse monoclonal anti- TRIM28 | ZenBio | CAT# 200280; RRID:AB_2924212 |
Mouse monoclonal anti- GFP | ProteinGene | CAT# 2057; RRID:AB_2924213 |
Rabbit monoclonal anti- p-S6K | CST | CAT# 9234; RRID:AB_2269803 |
Rabbit polyclonal anti- ATG3 | CST | CAT# 3415; RRID:AB_2059244 |
Rabbit polyclonal anti- TFE3 | CST | CAT# 14779; RRID:AB_2687582 |
Rabbit polyclonal anti- TFE3 | Proteintech | CAT# 14480-1-AP RRID:AB_2199587 |
Rabbit polyclonal anti- TFEB | CST | CAT# 4240; RRID:AB_11220225 |
Rabbit monoclonal anti- MITF | CST | CAT# 97800; RRID:AB_2800289 |
Rabbit monoclonal anti- KDM6A | CST | CAT# 33510; RRID:AB_2721244 |
Rabbit polyclonal anti- H3K4me3 | Abcam | CAT# AB8580; RRID:AB_306649 |
mouse monoclonal anti- H3K27me3 | Abcam | CAT# AB6002; RRID:AB_305237 |
Rabbit monoclonal anti-AMPKα | CST | CAT# 5831; RRID:AB_10622186 |
Rabbit monoclonal anti-KMT2C | Proteintech | CAT# 28437-1-AP; RRID:AB_2918165 |
Mouse monoclonal anti-LAMP1 | CST | CAT# 15665 RRID: AB_2798750 |
Rabbit monoclonal anti- β-ACTIN | ABclonal | CAT# AC026; RRID:AB_2768234 |
Rabbit polyclonal anti-Histone H3 | ABcam | CAT# ab1791; RRID:AB_302613 |
Mouse monoclonal anti- GAPDH | Abclonal | CAT# AC033; RRID:AB_2769570 |
Mouse monoclonal anti-Ubiquitin | Santa Cruz | CAT# sc-8017; RRID:AB_2762364 |
Rabbit polyclonal anti-Myc Tag | Proteintech | CAT# 16286-1-AP; RRID:AB_11182162 |
Mouse monoclonal anti-Myc tag | Santa Cruz | CAT# sc-40; RRID:AB_2857941 |
Anti-FLAG M2 Affinity Gel | Sigma | CAT# A2220; RRID:AB_10063035 |
HRP-M2 Anti-FLAG antibody, Mouse Monoclonal | Sigma | CAT# A8592; RRID:AB_439702 |
Mouse monoclonal anti-HA tag | Covance | CAT# MMS-101P; RRID:AB_2314672 |
Rabbit monoclonal anti-HA tag | CST | CST# 3724; RRID:AB_1549585 |
Mouse monoclonal HRP-anti-GST tag | Proteintech | CAT# HRP-66001; RRID:AB_2883833 |
HRP Goat Anti-Rabbit IgG (H+L) Secondary antibody | Abclonal | CAT# AS014; RRID:AB_2769854 |
HRP Goat anti-Mouse (H+L) Secondary antibody | Abclonal | CAT# AS003; RRID:AB_2769851 |
HRP-Goat Anti-Mouse Secondary antibody, heavy-Chain Specific | Abclonal | CAT# AS064; RRID:AB_2864058 |
HRP-Mouse anti Rabbit IgG Secondary antibody, Light-Chain Specific | Abclonal | CAT# AS061; RRID:AB_2864055 |
HRP-Goat Anti-Mouse IgG Secondary antibody, Light-Chain Specific | Abclonal | CAT# AS062; RRID:AB_2864056 |
Bacterial and Virus Strains | ||
BL21(codon plus) competent cell | 2nd Lab | CAT# EC1007S |
DH5α competent cell | Tsingke | CAT# TSV-A07 |
Stbl3 competent cell | 2nd Lab | CAT# DL1046S |
Biological Samples | ||
Chemicals, Peptides, and Recombinant Proteins | ||
Polybrene | Sigma | CAT# H9268 |
Protein A/G-Agarose beads | transgen | CAT# DP501-01 |
Protein G-Magnetic Beads | CST | CAT# 9006 |
Protein A/G-Magnetic Beads | MCE | CAT# HY-K0202 |
DAPI | Sigma | CAT# D8417 |
PES 0.45 μM filter | Millipore | CAT# SLHP033RB |
TRizol reagent | Thermo | CAT# 15596018 |
Formaldehyde | Sigma | CAT# F8775 |
Restriction Enzymes | NEB | |
Glutathione Agarose | Sigma | CAT# G4510 |
Doxycycline Hyclate | MCE | CAT# HY-N0565B |
Cycloheximide | Sigma | CAT# C7698 |
MG132 | MCE | CAT# HY-13259 |
PVDF | Millipore | CAT# IPVH00010 |
puromycin | InvivoGen | CAT# ANT-PR-1 |
G418 | MCE | CAT# HY-17561 |
hygromycin | InvivoGen | CAT# ant-hg-5 |
Blasticidin S | InvivoGen | CAT# ANT-BL-1 |
Torin1 | MCE | CAT# HY-13003 |
Critical Commercial Assays | ||
Quick Ligation Buffer | Promega | Cat# UC6711 |
Improm-II reverse transcription Kit | Promega | Cat# A3800 |
BCA Protein Assay Kit | Beyotime | Cat# P0012 |
DNase I kit | Sigma | Cat# AMPD1-1KT |
ThunderBird Syb Sybgreen Master Mix | Toyobo | Cat# QPK-201 |
iTaq™ Universal SYBR® Green Supermix | Bio-Rad | Cat# 1725124 |
Matrigel | BD Biosciences | Cat# 354248 |
Deposited Data | ||
Experimental Models: Cell Lines | ||
Caki-1 | Procell Co. Ltd | Cat# CL-0052; RRID:CVCL_0234 |
ACHN | Procell Co. Ltd | Cat# CL-0021; RRID:CVCL_1067 |
786-O | Procell Co. Ltd | Cat# CL-0010; RRID:CVCL_1051 |
RENCA | Procell Co. Ltd | Cat# CL-0568; RRID: CVCL_2174 |
HEK-293T | Shuguo Sun's Lab | RRID:CVCL_0063 |
Experimental Models: Organisms/Strains | ||
BALB/c mice | Charles River (Beijing) | |
NOG mice | Charles River (Beijing) | |
Oligonucleotides | ||
See Table S1 for oligo sequences for sgRNA, shRNA, RT-qPCR, ChIP-qPCR | This Paper | |
Recombinant DNA | ||
pLenti-Myc-TRIM28-WT | This Paper | |
pLenti-Myc-TRIM28-C65A/C68A | This Paper | |
pLenti-Myc-TFE3-WT | This Paper | |
pLenti-Myc-KDM6A-WT | This Paper | |
pLenti-Myc-KDM6A-H1146A | This Paper | |
pLenti-FLAG-TFE3-WT | This Paper | |
GST-TFE3 (1-143) | This Paper | |
GST-TFE3 (337-575) | This Paper | |
GST-TFE3 (113-370) | This Paper | |
pLKO-shTRIM28-1 | This Paper | |
pLKO-shTRIM28-2 | This Paper | |
pLKO-shTFE3-1 | This Paper | |
pLKO-shTFE3-2 | This Paper | |
pLKO-shTfe3-1 | This Paper | |
pLKO-shTfe3-2 | This Paper | |
pLKO-shKDM6A-1 | This Paper | |
pLKO-shKDM6A-2 | This Paper | |
pLenti-CRISPR-V2-sgATG3 | This Paper | |
pSPAX2 | Trono Lab | |
pMD2.G | Trono Lab | |
pLKO-TRC-puro | (Moffat et al., 2006) | |
pLenti-CRISPR-V2-neo | (Song et al., 2021) | |
Software and Algorithms | ||
Microsoft Excel 2016 | Microsoft Corp. | |
Image Lab 5.2.1 | Bio-Rad | |
R 4.2.1 | R project | |
Rstudio build 382 | Rstudio.com | |
ImageJ 1.53q | NIH | |
Graphpad Prism 8 | Graphpad.com | |
IGV 2.11.9 | Broad Institute | |
Trim-Galore | Babraham Institute | |
bowtie2 | (Langmead and Salzberg., 2012) | |
Deeptools | (Ram´ırez et al., 2014) | |
Adobe Illustrator CS6 | Adobe | |
Other |
References
- Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA: a cancer journal for clinicians. 2021; 71: 209-249
- Epigenetics in renal cell cancer: mechanisms and clinical applications.Nat Rev Urol. 2018; 15: 430-451
- The complexity of TRIM28 contribution to cancer.J. Biomed. Sci. 2017; 24: 63
- Sequential ubiquitination of p53 by TRIM28, RLIM, and MDM2 in lung tumorigenesis.Cell Death Differ. 2021; 28: 1790-1803
- KAP1 promotes proliferation and metastatic progression of breast cancer cells.Cancer Res. 2015; 75: 344-355
- TRIM28 protects TRIM24 from SPOP-mediated degradation and promotes prostate cancer progression.Nat Commun. 2018; 9: 5007
- Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to form regulatory complexes that suppress murine hepatocellular carcinoma.Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 8212-8217
- TRIM17 and TRIM28 antagonistically regulate the ubiquitination and anti-apoptotic activity of BCL2A1.Cell Death Differ. 2019; 26: 902-917
- Tripartite motif containing 28 (Trim28) can regulate cell proliferation by bridging HDAC1/E2F interactions.J. Biol. Chem. 2012; 287: 40106-40118
- TRIM28 regulates RNA polymerase II promoter-proximal pausing and pause release.Nat. Struct. Mol. Biol. 2014; 21: 876-883
- PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing.Mol. Cell. 2007; 28: 823-837
- MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases.Mol. Cell. 2010; 39: 963-974
- Degradation of AMPK by a cancer-specific ubiquitin ligase.Cell. 2015; 160: 715-728
- A substrate-trapping strategy to find E3 ubiquitin ligase substrates identifies Parkin and TRIM28 targets.Commun Biol. 2020; 3: 592
- UBE2S interacting with TRIM28 in the nucleus accelerates cell cycle by ubiquitination of p27 to promote hepatocellular carcinoma development.Signal Transduct Target Ther. 2021; 6: 64
- MAGE-TRIM28 complex promotes the Warburg effect and hepatocellular carcinoma progression by targeting FBP1 for degradation.Oncogenesis. 2017; 6: e312
- TRIM28 variants and Wilms' tumour predisposition.J. Pathol. 2021; 254: 494-504
- TRIM28 haploinsufficiency predisposes to Wilms tumor.Int. J. Cancer. 2019; 145: 941-951
- A unique subset of low-risk Wilms tumors is characterized by loss of function of TRIM28 (KAP1), a gene critical in early renal development: A Children's Oncology Group study.PLoS One. 2018; 13e0208936
- Germline mutations and somatic inactivation of TRIM28 in Wilms tumour.PLoS Genet. 2018; 14e1007399
- Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor.Proc. Natl. Acad. Sci. U. S. A. 2003; 100: 15077-15082
- Autophagy-deficient mice develop multiple liver tumors.Genes Dev. 2011; 25: 795-800
- Autophagy in cancer cell remodeling and quality control.Mol. Cell. 2022; 82: 1514-1527
- The return of the nucleus: transcriptional and epigenetic control of autophagy.Nat. Rev. Mol. Cell Biol. 2014; 15: 65-74
- TFEB links autophagy to lysosomal biogenesis.Science. 2011; 332: 1429-1433
- A gene network regulating lysosomal biogenesis and function.Science. 2009; 325: 473-477
- The complex relationship between TFEB transcription factor phosphorylation and subcellular localization.EMBO J. 2018; 37e98804
- Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism.Nature. 2015; 524: 361-365
- MiT Family Translocation Renal Cell Carcinoma: from the Early Descriptions to the Current Knowledge.Cancers. 2019; 11: 1110
- Translocation carcinomas of the kidney.Genes Chromosomes Cancer. 2022; 61: 219-227
- Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination.Science. 2007; 318: 447-450
- PTIP associates with MLL3- and MLL4-containing histone H3 lysine 4 methyltransferase complex.J. Biol. Chem. 2007; 282: 20395-20406
- The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex.Dev. Cell. 2007; 13: 580-592
- A ubiquitin-like system mediates protein lipidation.Nature. 2000; 408: 488-492
Klionsky, D. J., Abdel-Aziz, A. K., Abdelfatah, S., Abdellatif, M., Abdoli, A., Abel, S., et al. (2021) Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1). Autophagy 17, 1-382
- Role and regulation of autophagy in cancer.Biochim Biophys Acta Mol Basis Dis. 2022; 1868166400
- Large-scale mapping of human protein-protein interactions by mass spectrometry.Mol Syst Biol. 2007; 3: 89
- Sumoylation of MITF and its related family members TFE3 and TFEB.J. Biol. Chem. 2005; 280: 146-155
- PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing.Mol. Cell. 2007; 28: 823-837
- Role for KAP1 serine 824 phosphorylation and sumoylation/desumoylation switch in regulating KAP1-mediated transcriptional repression.J. Biol. Chem. 2007; 282: 36177-36189
- Sumoylation of the transcriptional intermediary factor 1beta (TIF1beta), the Co-repressor of the KRAB Multifinger proteins, is required for its transcriptional activity and is modulated by the KRAB domain.J. Biol. Chem. 2007; 282: 10190-10202
- Doxorubicin down-regulates Kruppel-associated box domain-associated protein 1 sumoylation that relieves its transcription repression on p21WAF1/CIP1 in breast cancer MCF-7 cells.J. Biol. Chem. 2007; 282: 1595-1606
- HECT and RING finger families of E3 ubiquitin ligases at a glance.J. Cell Sci. 2012; 125: 531-537
- Acetylated hsp70 and KAP1-mediated Vps34 SUMOylation is required for autophagosome creation in autophagy.Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 6841-6846
- STUB1 regulates TFEB-induced autophagy-lysosome pathway.EMBO J. 2017; 36: 2544-2552
- TP53/p53-FBXO22-TFEB controls basal autophagy to govern hormesis.Autophagy. 2021; 17: 3776-3793
- The Metabolic Basis of Kidney Cancer.Cancer Discov. 2019; 9: 1006-1021
- The FACT complex facilitates expression of lysosomal and antioxidant genes through binding to TFEB and TFE3.Autophagy. 2022; 18: 2333-2349
- UTX coordinates steroid hormone-mediated autophagy and cell death.Nat Commun. 2013; 4: 2916
- Fasting-induced FGF21 signaling activates hepatic autophagy and lipid degradation via JMJD3 histone demethylase.Nat Commun. 2020; 11: 807
- DOT1L O-GlcNAcylation promotes its protein stability and MLL-fusion leukemia cell proliferation.Cell Rep. 2021; 36109739
- Lysine demethylase KDM1A promotes cell growth via FKBP8-BCL2 axis in hepatocellular carcinoma.J. Biol. Chem. 2022; 298102374
- MPP8 and SIRT1 crosstalk in E-cadherin gene silencing and epithelial-mesenchymal transition.EMBO Rep. 2015; 16: 689-699
- Fast gapped-read alignment with Bowtie 2.Nat Methods. 2012; 9: 357-359
- deepTools: a flexible platform for exploring deep-sequencing data.Nucleic Acids Res. 2014; 42: W187-191
Article info
Publication history
Publication stage
In Press Accepted ManuscriptFootnotes
CRediT author statement
Tanjing Song: Conceptualization, Methodology, Investigation, Validation, Visualization, Writing- Original draft preparation, Writing- Reviewing and Editing, Funding acquisition
Suli Lv, Xianyun Ma: Conceptualization, Methodology, Investigation, Validation, Visualization
Xuefeng Zhao, Li Fan, Qingli Zou, Neng Li, Yingying Yan: Investigation, Validation
Wen Zhang: Conceptualization, Supervision
Lidong Sun: Conceptualization, Visualization, Writing- Original draft preparation, Writing- Reviewing and Editing, Funding acquisition
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy