ABSTRACT
Keywords
Abbreviations and nomenclature:
TcUBP1 T (cruzi U-rich RBP 1), RRM RNA (recognition motif), RBP RNA (binding protein), TcS (trans-sialidase/trans-sialidase-like), UTR (untranslated region), OE (overexpression), WT (wild-type)INTRODUCTION
- Romagnoli B.A.A.
- Holetz F.B.
- Alves L.R.
- Goldenberg S.
- Antwi E.B.
- Haanstra J.R.
- Ramasamy G.
- Jensen B.
- Droll D.
- Rojas F.
- Minia I.
- Terrao M.
- Mercé C.
- Matthews K.
- Myler P.J.
- Parsons M.
- Clayton C.
- Fadda A.
- Ryten M.
- Droll D.
- Rojas F.
- Färber V.
- Haanstra J.R.
- Merce C.
- Bakker B.M.
- Matthews K.
- Clayton C.
- Smircich P.
- Eastman G.
- Bispo S.
- Duhagon M.A.
- Guerra-Slompo E.P.
- Garat B.
- Goldenberg S.
- Munroe D.J.
- Dallagiovanna B.
- Holetz F.
- Sotelo-Silveira J.R.
- Chávez S.
- Eastman G.
- Smircich P.
- Becco L.L.
- Oliveira-Rizzo C.
- Fort R.
- Potenza M.
- Garat B.
- Sotelo-Silveira J.R.
- Duhagon M.A.
- Li Z.-H.
- De Gaudenzi J.G.
- Alvarez V.E.
- Mendiondo N.
- Wang H.
- Kissinger J.C.
- Frasch A.C.
- Docampo R.
- Smircich P.
- Eastman G.
- Bispo S.
- Duhagon M.A.
- Guerra-Slompo E.P.
- Garat B.
- Goldenberg S.
- Munroe D.J.
- Dallagiovanna B.
- Holetz F.
- Sotelo-Silveira J.R.
- Li Z.-H.
- De Gaudenzi J.G.
- Alvarez V.E.
- Mendiondo N.
- Wang H.
- Kissinger J.C.
- Frasch A.C.
- Docampo R.
- Freitas L.M.
- dos Santos S.L.
- Rodrigues-Luiz G.F.
- Mendes T.A.O.
- Rodrigues T.S.
- Gazzinelli R.T.
- Teixeira S.M.R.
- Fujiwara R.T.
- Bartholomeu D.C.
- Calderano S.G.
- Nishiyama Junior M.Y.
- Marini M.
- Nunes N.deO.
- Reis M.daS.
- Patané J.S.L.
- da Silveira J.F.
- da Cunha J.P.C.
- Elias M.C.
RESULTS
Identification of differentially expressed genes after TcUBP1 overexpression


Product name | GeneID | Fold Change | |
---|---|---|---|
Up-regulated genes: | |||
RNA-binding protein UBP1, putative | TcCLB.507093.220 | 71.51 | |
ABC transporter, putative | TcCLB.504881.50 | 17.88 | |
Mucin-associated surface protein (MASP), subgroup S008 | TcCLB.508147.150 | 15.45 | |
STE/STE11 serine/threonine-protein kinase, putative | TcCLB.510741.70 | 15.14 | |
hypothetical protein, conserved | TcCLB.506859.204 | 11.79 | |
NLI interacting factor-like phosphatase, putative | TcCLB.507677.140 | 10.93 | |
serine/threonine kinase, putative | TcCLB.480785.10 | 10.63 | |
hypothetical protein, conserved | TcCLB.511531.30 | 9.85 | |
metacyclin II, putative | TcCLB.506529.600 | 8.63 | |
hypothetical protein, conserved | TcCLB.506859.230 | 8.46 | |
Down-regulated genes: | |||
hypothetical protein, conserved | TcCLB.511181.150 | -4.44 | |
dispersed gene family protein 1 (DGF-1), putative | TcCLB.509921.60 | -4.86 | |
JAB1/Mov34/MPN/PAD-1 ubiquitin protease, putative | TcCLB.511575.120 | -4.86 | |
mitochondrial processing peptidase, beta subunit, putative | TcCLB.511181.50 | -4.96 | |
Mitochondrial outer membrane protein porin, putative (fragment) | TcCLB.511687.19 | -5.58 | |
dispersed gene family protein 1 (DGF-1), putative | TcCLB.507999.10 | -6.11 | |
hypothetical protein | TcCLB.511573.49 | -6.15 | |
Mitochondrial outer membrane protein porin, putative | TcCLB.511687.10 | -7.41 | |
Mucin-associated surface protein (MASP), subgroup S081 | TcCLB.511173.50 | -7.78 | |
Protein of unknown function (DUF1242), putative | TcCLB.503453.4 | -12.91 |
TcUBP1 overexpression leads to up-regulation of cell-surface trypomastigote glycoproteins and down-regulation of ribosomal and mitochondrial proteins

Up-regulated genes (OE > WT) | Down-regulated genes (OE < WT) | ||||||||
---|---|---|---|---|---|---|---|---|---|
ID | Database | Domain term | Gene count | P_Value | ID | Database | Domain term | Gene count | P_Value |
IPR008377 | INTERPRO | Trypanosome sialidase | 149 | 3.3E-77 | IPR018108 | INTERPRO | Mitochondrial substrate/solute carrier | 6 | 4.2E-3 |
IPR000719 | INTERPRO | Protein kinase, catalytic domain | 29 | 3.3E-3 | IPR027500 | INTERPRO | 40S ribosomal protein S1/3, eukaryotes | 3 | 3.2E-3 |
PF00076 | PFAM | RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain) | 9 | 1.2E-1 | IPR005225 | INTERPRO | Small GTP-binding protein domain | 6 | 3.7E-2 |
IPR006186 | INTERPRO | Serine/Threonine-specific protein phosphatase… | 5 | 9.6E-2 | IPR021053 | INTERPRO | Dispersed gene family protein 1, C-terminal | 8 | 1.7E-1 |


The expression profile of UBP1-OE epimastigotes resembles that of the transcriptome of trypomastigote infective stages

- Smircich P.
- Eastman G.
- Bispo S.
- Duhagon M.A.
- Guerra-Slompo E.P.
- Garat B.
- Goldenberg S.
- Munroe D.J.
- Dallagiovanna B.
- Holetz F.
- Sotelo-Silveira J.R.
Identification of cis-elements in the 3′-UTR of genes regulated by TcUBP1 overexpression

- Ray D.
- Kazan H.
- Cook K.B.
- Weirauch M.T.
- Najafabadi H.S.
- Li X.
- Gueroussov S.
- Albu M.
- Zheng H.
- Yang A.
- Na H.
- Irimia M.
- Matzat L.H.
- Dale R.K.
- Smith S.A.
- Yarosh C.A.
- Kelly S.M.
- Nabet B.
- Mecenas D.
- Li W.
- Laishram R.S.
- Qiao M.
- Lipshitz H.D.
- Piano F.
- Corbett A.H.
- Carstens R.P.
- Frey B.J.
- Anderson R.A.
- Lynch K.W.
- Penalva L.O.F.
- Lei E.P.
- Fraser A.G.
- Blencowe B.J.
- Morris Q.D.
- Hughes T.R.
- Tavares T.S.
- Mügge F.L.B.
- Grazielle-Silva V.
- Valente B.M.
- Goes W.M.
- Oliveira A.E.R.
- Belew A.T.
- Guarneri A.A.
- Pais F.S.
- El-Sayed N.M.
- Teixeira S.M.R.
RNA motif | Nucleotide sequence (from 5' to 3') | Confidence score |
---|---|---|
family_1 | UAUAUAUAUAUAUAUAUAUA | Model_1 =0.9366, very high probability |
family_2 | UUUGCUUUU | Model_1 =0.8745, very high probability |
UBP1m | UGGCGCAUCCAUGCCUGGAUGCGCCG | Model_1 =0.9421, very high probability |
UBP1m28 | UUUUGGAGGAAGUUUUUUUUGGGG | Model_1 =0.90, very high probability |
DISCUSSION
- Lima A.R.J.
- Silva H.G.deS.
- Poubel S.
- Rosón J.N.
- de Lima L.P.O.
- Costa-Silva H.M.
- Gonçalves C.S.
- Galante P.A.F.
- Holetz F.
- Motta M.C.M.
- Silber A.M.
- Elias M.C.
- da Cunha J.P.C.
- Tavares T.S.
- Mügge F.L.B.
- Grazielle-Silva V.
- Valente B.M.
- Goes W.M.
- Oliveira A.E.R.
- Belew A.T.
- Guarneri A.A.
- Pais F.S.
- El-Sayed N.M.
- Teixeira S.M.R.
- Mörking P.A.
- Rampazzo R.deC.P.
- Walrad P.
- Probst C.M.
- Soares M.J.
- Gradia D.F.
- Pavoni D.P.
- Krieger M.A.
- Matthews K.
- Goldenberg S.
- Fragoso S.P.
- Dallagiovanna B.
- Gupta S.K.
- Kosti I.
- Plaut G.
- Pivko A.
- Tkacz I.D.
- Cohen-Chalamish S.
- Biswas D.K.
- Wachtel C.
- Waldman Ben-Asher H.
- Carmi S.
- Glaser F.
- Mandel-Gutfreund Y.
- Michaeli S.
- Smircich P.
- Eastman G.
- Bispo S.
- Duhagon M.A.
- Guerra-Slompo E.P.
- Garat B.
- Goldenberg S.
- Munroe D.J.
- Dallagiovanna B.
- Holetz F.
- Sotelo-Silveira J.R.
- Belew A.T.
- Junqueira C.
- Rodrigues-Luiz G.F.
- Valente B.M.
- Oliveira A.E.R.
- Polidoro R.B.
- Zuccherato L.W.
- Bartholomeu D.C.
- Schenkman S.
- Gazzinelli R.T.
- Burleigh B.A.
- El-Sayed N.M.
- Teixeira S.M.R.
- Belew A.T.
- Junqueira C.
- Rodrigues-Luiz G.F.
- Valente B.M.
- Oliveira A.E.R.
- Polidoro R.B.
- Zuccherato L.W.
- Bartholomeu D.C.
- Schenkman S.
- Gazzinelli R.T.
- Burleigh B.A.
- El-Sayed N.M.
- Teixeira S.M.R.
- Pascuale C.A.
- Burgos J.M.
- Postan M.
- Lantos A.B.
- Bertelli A.
- Campetella O.
- Susana Leguizamón M.
- Oliveira A.E.R.
- Pereira M.C.A.
- Belew A.T.
- Ferreira L.R.P.
- Pereira L.M.N.
- Neves E.G.A.
- Nunes M.doC.P.
- Burleigh B.A.
- Dutra W.O.
- El-Sayed N.M.
- Gazzinelli R.T.
- Teixeira S.M.R.
- Wippel H.H.
- Malgarin J.S.
- Inoue A.H.
- da Veiga Leprevost F.
- Carvalho P.C.
- Goldenberg S.
- Alves L.R.
Gene symbol | Type | Gene ID / Sequence | Reference |
---|---|---|---|
TcUBP1 | RRM protein | TcCLB.507093.220 | ( 34 ) |
TcUBP2 | RRM protein | TcCLB.507093.229 | ( 73 ) |
TcRBP5 | RRM protein | A) TcCLB.511481.55 B) TcCLB.504005.6 | ( 17 ) |
TcRBP7 | RRM protein | A) TcCLB.506565.4 B) TcCLB.506565.8 C) TcCLB.508145.30 D) TcCLB.508145.20 E) TcCLB.508145.10 F) TcCLB.504243.10 | ( 74 ), |
TcRBP9 | RRM protein | A) TcCLB.511127.10 B) TcCLB.511481.70 | ( 75 ) |
TcRBP23B | RRM protein | TcCLB.507711.40 | ( 76 ) |
TcRBP26 | RRM protein | A) TcCLB.506795.10 B) TcCLB.509937.60 | ( 76 ) |
TcRBP37 | RRM protein | A) TcCLB.504085.30 B) TcCLB.507089.70 | ( 76 ) |
RBP40 | RRM protein | TcCLB.506565.12 | ( 77 ) |
TcDRBD5B | RRM protein | TcCLB.507025.50 | ( 76 ) |
TcDRBD7 | RRM protein | A) TcCLB.507873.30 B) TcCLB.510689.60 | ( 76 ) |
TcMRD1 | RRM protein | A) TcCLB.503897.90 B) TcCLB.509561.110 | ( 76 ) |
TcPABP1 | RRM protein | TcCLB.506885.70 | ( 78 ) |
- | RNA-binding protein, putative | TcCLB.511837.129 | ( 22 )
A zinc finger protein that is implicated in the control of epimastigote-specific gene expression and metacyclogenesis. Parasitology. 2021; 148: 1171-1185 |
- | RNA-binding protein, putative | TcCLB.511837.138 | ( 22 )
A zinc finger protein that is implicated in the control of epimastigote-specific gene expression and metacyclogenesis. Parasitology. 2021; 148: 1171-1185 |
RBP3m12 | RBP3 binding element | 5-AAGCGAAAGUGCAGAGA AUUGCUUUUUGUUU-3 | ( 24 ) |
UBP1m26 | UBP1 binding motif | 5-GCAGGAaAGUCGCGUUG UUUUUUUGG-3 | ( 24 ) |
UBP1m28 | UBP1 binding motif | 5-UUUUGGAGGAAGUUUUU UUUGGGG-3 | ( 24 ) |
m04144 | Endocytosis binding element | 5-auGCuUGUUAUUGuUUaCu cAUGaCGaUGAGaGCaU-3 | ( 17 , 18 ) |
m04130 | SNARE int. in vesicular transport binding element | 5-CugucugccUgugUcugUGc gcaggcgggcaG-3 | di( 17 , 18 ) |
EXPERIMENTAL PROCEDURES
Plasmid construction, parasite cultures and transfection
RNA preparation and RNA-seq
Overall quality parameters of the RNA-seq data
Read processing and data analysis
- Wickham H.
Functional annotation of gene lists
- Wickham H.
- Dennis G.
- Sherman B.T.
- Hosack D.A.
- Yang J.
- Gao W.
- Clifford Lane H.
- Lempicki R.A.
DATA AVAILABILITY
Funding and additional information
Conflict of interest
ACKNOWLEDGMENTS
Supplementary data
REFERENCES
- UTRme: A Scoring-Based Tool to Annotate Untranslated Regions in Trypanosomatid Genomes.Front. Genet. 2018; 9: 671
- Genomic analysis of sequence-dependent DNA curvature in Leishmania.PLoS One. 2013; 8e63068
- Analysis of mRNA processing at whole transcriptome level, transcriptomic profile and genome sequence refinement of Trypanosoma cruzi.Sci. Rep. 2019; 917376
- Proteomic analysis of Trypanosoma cruzi spliceosome complex.J. Proteomics. 2020; 223103822
- Regulation of gene expression in trypanosomatids: living with polycistronic transcription.Open Biol. 2019; 9190072
- RNA Binding Proteins and Gene Expression Regulation in Trypanosoma cruzi.Frontiers in Cellular and Infection Microbiology. 2020; https://doi.org/10.3389/fcimb.2020.00056
- Integrative analysis of the Trypanosoma brucei gene expression cascade predicts differential regulation of mRNA processing and unusual control of ribosomal protein expression.BMC Genomics. 2016; 17: 306
- Nuclear Compartmentalization Contributes to Stage-Specific Gene Expression Control in.Front Cell Dev Biol. 2017; 5: 8
- Transcriptome-wide analysis of trypanosome mRNA decay reveals complex degradation kinetics and suggests a role for co-transcriptional degradation in determining mRNA levels.Mol. Microbiol. 2014; 94: 307-326
- Ribosome profiling reveals translation control as a key mechanism generating differential gene expression in Trypanosoma cruzi.BMC Genomics. 2015; 16: 443
- Extensive stage-regulation of translation revealed by ribosome profiling of Trypanosoma brucei.BMC Genomics. 2014; 15: 911
- Comparative ribosome profiling reveals extensive translational complexity in different Trypanosoma brucei life cycle stages.Nucleic Acids Res. 2014; 42: 3623-3637
- Transcriptome-wide analysis of the Trypanosoma cruzi proliferative cycle identifies the periodically expressed mRNAs and their multiple levels of control.PLoS One. 2017; 12e0188441
- Intrinsic DNA curvature in trypanosomes.BMC Res. Notes. 2017; 10: 585
- Conserved motifs in nuclear genes encoding predicted mitochondrial proteins in Trypanosoma cruzi.PLoS One. 2019; 14e0215160
- Upstream ORFs Influence Translation Efficiency in the Parasite.Front. Genet. 2020; 11: 166
- RNA recognition motif-type RNA-binding proteins in Trypanosoma cruzi form a family involved in the interaction with specific transcripts in vivo.J. Biol. Chem. 2003; 278: 18884-18894
- Genome-wide analysis of 3’-untranslated regions supports the existence of post-transcriptional regulons controlling gene expression in trypanosomes.PeerJ. 2013; 1: e118
- A 43-nucleotide U-rich element in 3’-untranslated region of large number of Trypanosoma cruzi transcripts is important for mRNA abundance in intracellular amastigotes.J. Biol. Chem. 2012; 287: 19058-19069
- EIF2α phosphorylation is regulated in intracellular amastigotes for the generation of infective Trypanosoma cruzi trypomastigote forms.Cell. Microbiol. 2020; 22e13243
- Developmental progression to infectivity in Trypanosoma brucei triggered by an RNA-binding protein.Science. 2012; 338: 1352-1353
- A zinc finger protein that is implicated in the control of epimastigote-specific gene expression and metacyclogenesis.Parasitology. 2021; 148: 1171-1185
- A common RNA recognition motif identified within a defined U1 RNA binding domain of the 70K U1 snRNP protein.Cell. 1989; 57: 89-101
- Functionally related transcripts have common RNA motifs for specific RNA-binding proteins in trypanosomes.BMC Mol. Biol. 2008; 9: 107
- Genomic analyses, gene expression and antigenic profile of the trans-sialidase superfamily of Trypanosoma cruzi reveal an undetected level of complexity.PLoS One. 2011; 6e25914
- Identification of Novel Interspersed DNA Repetitive Elements in the Genome Associated with the 3’UTRs of Surface Multigenic Families.Genes. 2020; https://doi.org/10.3390/genes11101235
- Translational repression by an RNA-binding protein promotes differentiation to infective forms in Trypanosoma cruzi.PLoS Pathog. 2018; 14e1007059
- The RNA-binding protein TcUBP1 up-regulates an RNA regulon for a cell surface-associated glycoprotein and promotes parasite infectivity.J. Biol. Chem. 2019; 294: 10349-10364
- Post-transcriptional operons and regulons co-ordinating gene expression.Chromosome Res. 2005; 13: 327-337
- RNA regulons: coordination of post-transcriptional events.Nat. Rev. Genet. 2007; 8: 533-543
- RNA regulons in cancer and inflammation.Curr. Opin. Genet. Dev. 2018; 48: 97-103
- Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.Genome Biol. 2014; 15: 550
- Localization and developmental regulation of a dispersed gene family 1 protein in Trypanosoma cruzi.Infect. Immun. 2010; 78: 231-240
- TcUBP-1, a developmentally regulated U-rich RNA-binding protein involved in selective mRNA destabilization in trypanosomes.J. Biol. Chem. 2001; 276: 34801-34809
- Conserved Curvature of RNA Polymerase I Core Promoter Beyond rRNA Genes: The Case of the Tritryps.Genomics Proteomics Bioinformatics. 2015; 13: 355-363
- Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection.PLoS Pathog. 2016; 12e1005511
- Sequences involved in mRNA processing in Trypanosoma cruzi.Int. J. Parasitol. 2008; 38: 1383-1389
- A compendium of RNA-binding motifs for decoding gene regulation.Nature. 2013; 499: 172-177
- RNAcompete methodology and application to determine sequence preferences of unconventional RNA-binding proteins.Methods. 2017; 118-119: 3-15
- Predicting RNA-protein interactions using only sequence information.BMC Bioinformatics. 2011; 12: 489
- Modeling Protein-Protein or Protein-DNA/RNA Complexes Using the HDOCK Webserver.Methods Mol. Biol. 2020; 2165: 217-229
- Open chromatin analysis in Trypanosoma cruzi life forms highlights critical differences in genomic compartments and developmental regulation at tDNA loci.Epigenetics Chromatin. 2022; 15: 22
- Gene expression regulation in trypanosomatids.Essays Biochem. 2011; 51: 31-46
- Disruption of the developmental programme of Trypanosoma brucei by genetic ablation of TbZFP1, a differentiation-enriched CCCH protein.Mol. Microbiol. 2005; 57: 706-716
- A novel CCCH protein which modulates differentiation of Trypanosoma brucei to its procyclic form.EMBO J. 2001; 20: 6700-6711
- Expression of the RNA recognition motif protein RBP10 promotes a bloodstream-form transcript pattern in Trypanosoma brucei.Mol. Microbiol. 2012; 83: 1048-1063
- Knockout of the CCCH zinc finger protein TcZC3H31 blocks Trypanosoma cruzi differentiation into the infective metacyclic form.Mol. Biochem. Parasitol. 2018; 221: 1-9
- The DRBD13 RNA binding protein is involved in the insect-stage differentiation process of Trypanosoma brucei.FEBS Lett. 2015; 589: 1966-1974
- The zinc finger protein TcZFP2 binds target mRNAs enriched during Trypanosoma cruzi metacyclogenesis.Mem. Inst. Oswaldo Cruz. 2012; 107: 790-799
- Identification of positive and negative regulators in the stepwise developmental progression towards infectivity in Trypanosoma brucei.Sci. Rep. 2021; 11: 5755
- The hnRNP F/H homologue of Trypanosoma brucei is differentially expressed in the two life cycle stages of the parasite and regulates splicing and mRNA stability.Nucleic Acids Res. 2013; 41: 6577-6594
- ALBA proteins are stage regulated during trypanosome development in the tsetse fly and participate in differentiation.Mol. Biol. Cell. 2011; 22: 4205-4219
- Differential expression analysis of transcriptome data of RBP6 induction in procyclics leading to infectious metacyclics and bloodstream forms.Data Brief. 2018; 20: 978-980
- Slight temperature changes cause rapid transcriptomic responses in Trypanosoma cruzi metacyclic trypomastigotes.Parasit. Vectors. 2020; 13: 255
- Comparative transcriptome profiling of virulent and non-virulent Trypanosoma cruzi underlines the role of surface proteins during infection.PLoS Pathog. 2017; 13e1006767
- Extensive Translational Regulation through the Proliferative Transition of Trypanosoma cruzi Revealed by Multi-Omics.mSphere. 2021; 6e0036621
- Multifunctional RNA-binding proteins influence mRNA abundance and translational efficiency of distinct sets of target genes.PLoS Comput. Biol. 2021; 17e1009658
- Insights into the Regulation of mRNA Processing of Polycistronic Transcripts Mediated by DRBD4/PTB2, a Trypanosome Homolog of the Polypyrimidine Tract-Binding Protein.J. Eukaryot. Microbiol. 2016; 63: 440-452
- Proteomic analysis reveals the dynamic association of proteins with translated mRNAs in Trypanosoma cruzi.Gene. 2010; 452: 72-78
- Inactive trans-Sialidase Expression in iTS-null Trypanosoma cruzi Generates Virulent Trypomastigotes.Frontiers in Cellular and Infection Microbiology. 2017; https://doi.org/10.3389/fcimb.2017.00430
- The MAP kinase MAPKLK1 is essential to Trypanosoma brucei proliferation and regulates proteins involved in mRNA metabolism.J. Proteomics. 2017; 154: 118-127
- An AMP-activated protein kinase complex with two distinctive alpha subunits is involved in nutritional stress responses in Trypanosoma cruzi.PLoS Negl. Trop. Dis. 2021; 15e0009435
- Gene co-expression network analysis of Trypanosoma brucei in tsetse fly vector.Parasit. Vectors. 2021; 14: 74
- High-throughput Methods for Dissection of Trypanosome Gene Regulatory Networks.Curr. Genomics. 2018; 19: 78-86
- Translational remodeling by RNA-binding proteins and noncoding RNAs.Wiley Interdiscip. Rev. RNA. 2021; 12: e1647
- Gene expression network analyses during infection with virulent and avirulent Trypanosoma cruzi strains unveil a role for fibroblasts in neutrophil recruitment and activation.PLoS Pathog. 2020; 16e1008781
- Unveiling the partners of the DRBD2-mRNP complex, an RBP in Trypanosoma cruzi and ortholog to the yeast SR-protein Gbp2.BMC Microbiology. 2019; https://doi.org/10.1186/s12866-019-1505-8
- FastQ Screen: A tool for multi-genome mapping and quality control.F1000Res. 2018; 7: 1338
- featureCounts: an efficient general purpose program for assigning sequence reads to genomic features.Bioinformatics. 2014; 30: 923-930
- Programming with ggplot2.Use R!. 2016; https://doi.org/10.1007/978-3-319-24277-4_12
- DAVID: Database for Annotation, Visualization, and Integrated Discovery.Genome Biology. 2003; https://doi.org/10.1186/gb-2003-4-5-p3
- Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.Nat. Protoc. 2009; 4: 44-57
- TcUBP-1, an mRNA Destabilizing Factor from Trypanosomes, Homodimerizes and Interacts with Novel AU-rich Element- and Poly (A)-binding Proteins Forming a Ribonucleoprotein Complex.Journal of Biological Chemistry. 2002; 277: 50520-50528
- Non-linear hierarchy of the quorum sensing signalling pathway in bloodstream form African trypanosomes.PLoS Pathog. 2018; 14e1007145
- Assessing the partners of the RBP9-mRNP complex in Trypanosoma cruzi using shotgun proteomics and RNA-seq.RNA Biol. 2018; 15: 1106-1118
- RNA-binding domain proteins in Kinetoplastids: a comparative analysis.Eukaryot. Cell. 2005; 4: 2106-2114
- Molecular characterization of the Trypanosoma cruzi specific RNA binding protein TcRBP40 and its associated mRNAs.Biochem. Biophys. Res. Commun. 2012; 420: 302-307
- Characterization of a Trypanosoma cruzi poly (A)-binding protein and its genes.Mol. Biochem. Parasitol. 1994; 67: 301-312
Article info
Publication history
Publication stage
In Press Accepted ManuscriptFootnotes
This article contains supporting information: Tables S1-S7 and Figs. S1-S3.
Unpublished observations and personal communications
Author contributions
K. B. S., P.S. and J. G. D. G. methodology; J. G. D. G. writing original draft; J. G. D. G. investigation; P.S., J.R.S. and J. G. D. G. formal analysis; P.S., J.R.S. and J. G. D. G. conceptualization; J. G. D. G. funding acquisition; J. G. D. G. visualization; J. G. D. G. project administration; J. G. D. G. writing-review and editing; J. G. D. G. supervision.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy