Supporting Information

High salt transcription of DNA co-tethered with T7 RNA polymerase to beads generates increased yields of highly pure RNA

Elvan Cavac¹, Luis E. Ramírez-Tapia²,³ and Craig T. Martin¹, ², *

¹Department of Chemistry and the ²Graduate Program in Molecular & Cellular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
³Current address: Green Light Biosciences, Boston, MA 02118, USA

* To whom correspondence should be addressed. Tel: +1 413 545 3299; Fax: +1 413 545 4490; Email: cmartin@chem.umass.edu

Table of Contents

Figure S1. Sequences used for transcription in this study
Figure S2. Effect of Strep Tag® II and biotinylation on transcription in solution
Figure S3. Effect of Strep Tag® II and biotinylation on transcription on beads
Figure S4. Challenging the tethered system with untethered promoter DNA
Figure S5. Saturating the free tethered enzyme with modified promoter DNA
Figure S1. DNA sequences and constructs used in this study.
Figure S2 Effect of Strep Tag® II and nontemplate biotinylation on high yield solution transcription of RNA-24. A. Denaturing gel analysis (20%, 7M Urea) of high yield transcription of RNA-24 using the corresponding constructs. B. Quantitative analysis of gel in A.
Figure S3. Effect of Strep Tag® II and nontemplate biotinylation on high yield tethered transcription of RNA-24. A. Denaturing gel analysis (20%, 7M Urea) of high yield transcription of RNA-24 using the corresponding constructs.
Figure S4. Challenging the Tethered System with Untethered Promoter DNA. A) Denaturing gel analysis (20%, 7M Urea) of high yield transcription of untethered RNA-24Alt and untethered RNA-34Alt and tethered RNA-24Alt and untethered RNA-34Alt at low and high salt concentrations. B) Quantitative analysis of gel in Figure S1A.
Figure S5. Saturating the free tethered enzyme with modified promoter DNA. A) Denaturing gel analysis (20%, 7M Urea) of high yield transcription of tethered RNA-24Alt and untethered RNA-34Alt from 1:1 and 1:2 E:D preincubation. B) Quantitative analysis of gel in Figure S1A.