Characterization of a highly diverged mitochondrial ATP synthase F₀ subunit in *Trypanosoma brucei*

Caroline E. Dewar¹, Silke Oeljeklaus², Christoph Wenger³, Bettina Warscheid²,³ * and André Schneider¹ *

Running title: Highly diverged F₀ subunit of *T. brucei*

¹Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
²Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, 97074 Würzburg, Germany
³CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany

* To whom correspondence should be addressed: bettina.warscheid@biologie.uni-freiburg.de, andre.schneider@unibe.ch

Keywords: ATP synthase, mitochondria, *Trypanosoma brucei*, proteomics, protozoan

Supporting Information:
Figure S1: Further proteins that interact with Tb927.8.3070
Figure S2: *In silico* analysis of Tb927.8.3070
Table S1: Tb927.8.3070 SILAC-IP data
Table S2: Tb927.8.3070 SILAC RNAi data
Table S3: List of proteins found more than 5-fold enriched in the Tb927.8.3070-myc SILAC CoIP and those found more than 1.5-fold downregulated in Tb927.8.3070 SILAC RNAi experiment.
Fig. S1. Further proteins that interact with Tb927.8.3070

A volcano plot depicting of the SILAC-IP analysis of crude mitochondrial extracts from Tb927.8.3070-myc expressing cells as shown in Fig 1C. Proteins more than 10-fold enriched are labelled with either their name or accession numbers.
Fig. S2. In silico analysis of Tb927.8.3070

(A) List of HHpred results using Tb927.8.3070 as the input sequence. The hits related to ATP synthase subunit b are highlighted in blue. (B) The sequence of Tb927.8.3070 that displays secondary structure homology to regions in the ATP synthase subunit b of spinach (*Spinacia oleracea*) chloroplasts, yeast (*S. cerevisiae*) and *Bacillus* species using HHpred. (C) Sequence alignment between Tb927.8.3070 and its orthologs in Kinetoplastid species using Clustal Omega (84). TcCLB *T. cruzi*, TM *T. theileri*, TcIL *T. congolense*, Baya *B. ayalai*, EMOLV *E. monterogeii*, LENLEM *L. enriettii*, Lbr *L. braziliensis*, Lta *L. tarentolae*, LAMA *L. amazonensis*, Lmx *L. mexicana*, LARLEM *L. arabica*, Ld *L. donovani*, LINF *L. infantum*, LAEL *L. aethiopica*, Lmj *L. major*, Lsey *L. seymouri*, CFAC *C. fasciculata*.
Table S3. List of proteins found more than 5-fold enriched in the Tb927.8.3070-myc SILAC CoIP and those found more than 1.5-fold downregulated in Tb927.8.3070 SILAC RNAi experiment.

<table>
<thead>
<tr>
<th>ORF</th>
<th>MW (kDa)</th>
<th>Predicted TMD</th>
<th>Tryptag localisation</th>
<th>Enrichment in Tb927.8.3070-myc SILAC CoIP</th>
<th>Downregulation in Tb927.8.3070 SILAC RNAi</th>
<th>Associated with MCU</th>
<th>Importome IM protein</th>
<th>PSI-BLAST PSI-BLAST</th>
<th>HHpred hit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb927.2.5930</td>
<td>60.5</td>
<td>N</td>
<td>Mito</td>
<td>21.4x</td>
<td>1.73x</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>Tb927.2.5140</td>
<td>17.4</td>
<td>Y</td>
<td>Mito</td>
<td>18.4x</td>
<td>1.48x</td>
<td>Y</td>
<td>Y</td>
<td>nd</td>
<td>-</td>
</tr>
<tr>
<td>Tb927.10.9120</td>
<td>27.3</td>
<td>N</td>
<td>Mito</td>
<td>16.8x</td>
<td>1.61x</td>
<td>nd</td>
<td>Y</td>
<td>nd</td>
<td>-</td>
</tr>
<tr>
<td>Tb927.5.2150</td>
<td>60.1</td>
<td>N</td>
<td>Mito</td>
<td>12.1x</td>
<td>1.07x</td>
<td>nd</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>Tb927.4.1760</td>
<td>17.4</td>
<td>N</td>
<td>Mito</td>
<td>11.4x</td>
<td>1.04x</td>
<td>nd</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>Tb927.6.590</td>
<td>12.3</td>
<td>N</td>
<td>Mito</td>
<td>nd</td>
<td>2.23x</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>Tb927.9.7980</td>
<td>15.8</td>
<td>N</td>
<td>Non mito</td>
<td>nd</td>
<td>2.01x</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>-</td>
</tr>
<tr>
<td>Tb927.11.9940</td>
<td>20.6</td>
<td>N</td>
<td>na</td>
<td>nd</td>
<td>1.69x</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>-</td>
</tr>
<tr>
<td>Tb927.10.1430</td>
<td>27.3</td>
<td>N</td>
<td>na</td>
<td>nd</td>
<td>1.67x</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>N</td>
</tr>
</tbody>
</table>

1 Functional predictions were performed using InterPro and BLAST analysis.
2 TMD were predicted using TMHMM.
3 Localisation as assessed from images in the Tryptag database [85], C terminal tag only, na = image not available
4 In this work, nd = protein not detected in this analysis.
5 Proteins found in associated with TbMCU in this publication. Y= protein found associated, nd = protein not detected in this analysis.
6 Proteins listed in the mitochondrial importome defined in this publication. Y= protein listed, nd = protein not detected in this analysis.
7 Proteins found in IM fraction in this publication. Y= protein found in IM, N= protein not in IM, nd = protein not detected in this analysis.
8 Protein sequence similarity assessed by PSI-BLAST against sequences in S. cerevisiae databases
9 The top HHpred hit was recorded, unless one of the hits was a known F1F0 ATP synthase subunit. Also recorded was the hit number (#), the number of amino acids covered by the structural homology and the total number of amino acids of the protein hit in question (x/y), the probability of the hit in % and the p-value of the hit.
REFERENCES

