Supplementary Data

for

Hyper-truncated Asn355- and Asn391-glycans modulate the activity of neutrophil granule myeloperoxidase

Harry C. Tjondroa,b,1, Julian Ugonotti a,b,1, Rebeca Kawahara a,b,1, Sayantani Chatterjee a,b,1, Ian Lokec, Siyun Chend, Fabian Soltermannd, Hannes Hinneburga,b,, Benjamin L. Parkere, Vignesh Venkatakrishnanf, Regis Dieckmannf, Oliver C. Grante, Johan Bylundh, Alison Rodgera,b, Robert J. Woodsg, Anna Karlsson-Bengtssonf, Weston B. Struwed, Morten Thaysen-Andersena,b,*

aDepartment of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
bBiomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia
cCordlife Group Limited, Singapore, Singapore
dDepartment of Chemistry, University of Oxford, Oxford, United Kingdom
eDepartment of Physiology, University of Melbourne, Melbourne, VIC, Australia
fDepartment of Rheumatology & Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
gComplex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States
hDepartment of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
iDepartment of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden

1Contributed equally

*Corresponding author:
Dr Morten Thaysen-Andersen, PhD
Department of Molecular Sciences - Macquarie University, NSW-2109, Sydney, Australia
Ph: +61 2 9850 7487 - Email: morten.andersen@mq.edu.au
Annotation and Fragmentation Key

- Mannose (162.0528 Da)
- Galactose (162.0528 Da)
- N-Acetylglucosamine (203.0794 Da)
- N-Acetylgalactosamine (203.0794 Da)
- N-Acetylneuraminic acid (291.0954 Da)
- Fucose (146.0579 Da)
- Cross-ring fragment (unspecified)
- Acetyl group (42.0106 Da)

- Indicates mostly Y ions (includes oxygen of glycosidic linkage)
- Indicates mostly Z ions (excludes oxygen of glycosidic linkage)

- Reduced reducing end
- Phosphate (79.9700 Da)

Supplementary Data S1
Manually annotated PGC-LC-ESI-CID-MS/MS (-) spectra of reduced N-glycans (alditols) released from nMPO
Glycan #1

Observed m/z 571.24 (1-), RT: ~17.8 min

[M-H]⁻ 571.23 Da

*Ambiguity of the cross-ring fragments
Glycan #2

Observed m/z 587.30 (1-), RT: ~16.9 min
[M-H]⁻: 587.23 Da
Glycan #3

Observed m/z 733.36 (1-), RT: ~21.1 min

[M-H]⁻ 733.28 Da

Precursor ion - Acetyl

Precursor ion - Acetyl-H₂O

* Ambiguity of the cross-ring fragments
Glycan #4

Observed m/z 749.36 (1-), RT: ~18.4 min
[M-H]⁻ 749.28 Da

Note: Only one isomer was observed for M₂, which is biosynthetically predicted to be α₁,6-linkage isomer based on experience with neutrophil glycosylation. The α₁,3-isomer, typically of lower abundance in human neutrophils, was not detected.
Glycan #5a

Observed m/z 895.46 (1-), RT: ~24.3 min

[M-H]· 895.34 Da

Note: Identified as the α1,6-Man isomer based on PGC LC elution time, its high abundance and experience with neutrophil N-glycosylation.

Precursor ion -Acetyl

Precursor ion -Acetyl-H₂O

* Ambiguity of the cross-ring fragments
Glycan #5b

Observed m/z 895.46 (1-), RT: ~26.4 min
[M-H] 895.34 Da

Note: This low abundance glycan was annotated as the α1,3-Man isomer based on PGC LC elution time and experience with neutrophil N-glycosylation.

* Ambiguity of the cross-ring fragments
Glycan #6

Observed m/z 911.44 (1-), RT: ~22.9 min

[M-H] 911.33 Da

* Ambiguity of the cross-ring fragments
Glycan #7

Observed m/z 1057.54 (1-), RT: ~31.1 min
[M-H]^- 1057.39 Da

* Ambiguity of the cross-ring fragments
Glycan #8a

Note: The outer mannose residue has been placed on the α1,6-Man arm based on biosynthetic rules and may be predicted to be α1,6-linked based on PGC LC elution pattern (relative to the M4b isomer). However the mannosyl linkage of this residue was left unassigned since no MS/MS evidence is present to support this.

Observed m/z 1073.40 (1-), RT: ~18.3 min
[M-H]^- 1073.38 Da
Glycan #8b

Observed m/z 1073.40 (1-), RT: ~21.3 min

[M-H]⁻ 1073.38 Da

Note: The outer mannose residue has been placed on the α1,6-Man arm based on biosynthetic rules and may be predicted to be α1,3-linked based on PGC LC elution pattern (relative to the M4a isomer). However, the mannosyl linkage of this residue was left unassigned since no MS/MS evidence is present to support this.

Precursor ion -Acetyl

Precursor ion -Acetyl-H₂O

* Ambiguity of the cross-ring fragments
Note: The outer mannose residue has been placed on the α1,6-Man arm based on biosynthetic rules. Unknown if this residue is found in a α1,3- or α1,6-linkage since no MS/MS evidence to support either so left unassigned.

Observed \(m/z \) 1219.44 (1-), RT: ~28.5 min

\([M-H]^-\) 1219.44 Da
Glycan #10

Observed m/z 617.22 (2-), RT: ~18.1 min
[M-H-] 1235.44 Da

Ambiguity of the cross-ring fragments
Glycan #11a

Observed m/z 1381.62 (1-), RT: ~30.4 min

[M-H]⁻ 1381.49 Da

Note: Structure predicted from known biosynthetic rules, but no MS/MS support for exact topology of outer mannose residues.
Glycan #11b

Observed m/z 1381.62 (1-), RT: ~33.2 min
[M-H]- 1381.49 Da

Note: Structure predicted from known biosynthetic rules, but no MS/MS support for exact topology of outer mannose residues.

* Ambiguity of the cross-ring fragments
Glycan #12

Observed m/z 698.36 (2-), RT: ~20.7 min
[M-H]⁻ 1397.49 Da

*Ambiguity of the cross-ring fragments
Glycan #13

Observed m/z 779.38 (2-), RT: ~20.9 min
[M-H]⁻ 1559.54 Da

-2 Hex

-2

-2

-2

-4 Hex

-3 Hex

-2 Hex

* Ambiguity of the cross-ring fragments
Glycan #14a

Observed m/z 738.23 (2-), RT: ~17.6 min
[M-H] - 1477.46 Da

Note: Based on knowledge of the M6P pathway, the phosphate moiety appears on outer mannose residue, but no direct MS/MS evidence to support the exact position of the phosphate.
Glycan #14b

Observed m/z 738.23 (2-), RT: ~18.5 min

[M-H]⁻ 1477.46 Da

Note: Based on knowledge of the M6P pathway, the phosphate moiety appears on outer mannose residue, but no MS/MS evidence to support the exact position.

* Ambiguity of the cross-ring fragments
Glycan #15

Observed m/z 819.32 (2-), RT: ~17.8 min
[M-H]⁻ 1639.51 Da

Note: Based on knowledge of the M6P pathway, the phosphate moiety appears on outer mannose residue, but no MS/MS evidence to support the exact position of the phosphate.
Glycan #16

Observed m/z 1260.60 (1-), RT: ~33.7 min

$[\text{M-H}]^- 1260.47$ Da

Note: From biosynthetic pathway, the single β1,2-GlcNAc residue is predicted to occupy the α-1,3 arm but no MS/MS evidence to support this, so here left unassigned.
Glycan #17

Observed m/z 731.28 (2-), RT: ~26.1 min

[M-H]⁻ 1463.55 Da

*Ambiguity of the cross-ring fragments
Glycan #18

Observed m/z 783.28 (2-), RT: ~22.3 min

[M-H]: 1567.56 Da

Note: This glycan is annotated as the α2,6-sialyl linkage isomer based on the early PGC-LC elution and experience with neutrophil N-glycan profiling. The elongated antenna is known to frequently occupy the α1,3-arm rather than the α1,6-arm of neutrophil N-glycans and have thus been assigned as such.
Glycan #19a

Observed m/z 856.31 (2-), RT: ~27.9 min

\[\text{[M-H]} \times 1713.62 \text{ Da} \]

Note: This glycan is annotated as the α2,6-sialyl linkage isomer based on the early PGC-LC elution and experience with neutrophil N-glycan profiling. The elongated antenna is known to frequently occupy the α1,3-arm rather than the α1,6-arm of neutrophil N-glycans and have thus been assigned as such.

* Ambiguity of the cross-ring fragments
Glycan #19b

Note: This glycan is annotated as the α2,3-sialyl linkage isomer based on the late PGC-LC elution and experience with neutrophil N-glycan profiling. The elongated antenna is known to frequently occupy the α1,3-arm rather than the α1,6-arm of neutrophil N-glycans and is thus assigned as such.

Observed m/z 856.31 (2-), RT: ~35.6 min
[M-H]- 1713.62 Da

FA1G1S1b

* Ambiguity of the cross-ring fragments
Note: This low abundance glycan is possibly the isomer where the Sia-Gal-GlcNAc antenna occupy the α1,6-arm rather than the α1,3-arm common for neutrophil N-glycans but no direct MS/MS evidence to support this.

Glycan #19c

Observed m/z 856.31 (2-), RT: ~43.8 min

$[\text{M-H}]^-$ 1713.62 Da

Ambiguity of the cross-ring fragments
Glycan #20a

Observed m/z 957.85 (2⁻), RT: ~29.3 min

[M-H⁻]: 1916.70 Da

Note: This glycan is annotated as the α2,6-sialyl linkage isomer based on the early PGC-LC elution and higher abundance (relative to Glycan #20b) and experience with neutrophil N-glycan profiling. The elongated antenna is known to frequently occupy the α1,3-arm rather than the α1,6-arm of neutrophil N-glycans and is thus represented as such.

FA2G1S1a

* Ambiguity of the cross-ring fragments
Glycan #20b

Note: This glycan is annotated as the α2,3-sialyl linkage isomer based on the later PGC-LC elution and lower abundance (relative to Glycan #20a) and experience with neutrophil N-glycan profiling. The elongated antenna is known to frequently occupy the α1,3-arm rather than the α1,6-arm of neutrophil N-glycans and have thus been assigned as such.

Observed m/z 957.85 (2−), RT: ~37.3 min

[M-H]− 1916.70 Da

FA2G1S1b

* Ambiguity in the cross-ring fragments
Glycan #21

Observed m/z 1038.88 (2-), RT: ~31.3 min

[M-H]⁻ 2078.75 Da

Note: This glycan is annotated as the α2,6-sialyl linkage isomer based on the early PGC-LC elution and experience with neutrophil N-glycan profiling. The arm position of the sialic acid could not be deduced.
Note: This glycan has been annotated as the α2,6-/α2,6-sialyl isomer based on the early PGC-LC elution time.
Note: This glycan has been annotated as the α2,6-/α2,3-sialyl isomer based on the late PGC-LC elution time (relative to Glycan #22a) and experience with neutrophil N-glycosylation. Not possible to position the α2,6- and α2,3-sialic acid to specific arms.

Observed m/z 1184.52 (2-), RT: ~39.4 min

[M-H] - 2369.84 Da

FA2G2S2b

m/z 1916.96

* Ambiguity of the cross-ring fragments
Glycan #23

Observed m/z 1111.91 (2-), RT: ~29.9 min

$[\text{M-H}]^-$ 2224.82 Da

Note: No MS/MS evidence to support fucosyl-linkage type or the position of this outer arm residue, hence these features relating to the fucosyl moiety have been left unassigned. The sialyl-linkage can be predicted to be α2,6-sialyl from other characterised structures, but the arm position of this residue is unknown.
Supplementary Data S2A
Examples of Byonic-annotated reversed phase-LC-ESI-HCD-MS/MS (+) spectra of peptides identified with non-glyco PTMs (i.e. Met and Trp mono- and di-oxidation and Tyr mono-chlorination) from the analysis of unenriched peptide mixtures of nMPO
Human myeloperoxidase (P05164)

Mono-oxidised methionine-containing peptide

629\textcolor{red}{KLM}EQYGTPNNIDIWMGGVSEPLKR\textcolor{black}{641} (identification confidence level, PEP 2D: 2.4\times10^{-20})
Human myeloperoxidase (P05164)

Mono-oxidised tryptophan-containing peptide

$^{198}\text{WLPAEYEDGFSLPYG}^\text{WTPGVKR}^{219}$ (identification confidence level, PEP 2D: 1.9×10^{-15})
Human myeloperoxidase (P05164)

Di-oxidised tryptophan-containing peptide

629KLMEQYGTPNNIDIWMGGVSEPLKR641 (identification confidence level, PEP 2D: 1.9×10^{-18})

R. KLM$^{[+16]}$EYGTPNNIDIW$^{[+32]}$MGGVSEPLKR. K z=4, scan#=48200, scan time=73.5488
Supplementary Data S2B
Byonic-annotated reversed phase-LC-ESI-HCD-MS/MS (+) spectra of N- and C-terminal truncation variants of the MPO α- and β-chain identified from the analysis of unenriched peptide mixtures of nMPO
Human myeloperoxidase (P05164)
α-chain N-terminal (truncation variant)

$^{164}\text{GVTCPEQDKYR}$ (identification confidence level, PEP 2D: 4.0×10^{-11})
Human myeloperoxidase (P05164)
α-chain N-terminal (truncation variant)
165VTCEQDKYR (identification confidence level, PEP 2D: 5.7×10^{-7})
Human myeloperoxidase (P05164)
α-chain N-terminal (truncation variant)

$^{166}_{\text{T}}$CPEQDKYR (identification confidence level, PEP 2D: 3.3×10^{-8})
Human myeloperoxidase (P05164)
α-chain N-terminal (truncation variant)
SLMFMQWGQLLDHDLDFTEPAAR^{272} (identification confidence level, PEP 2D: 1.9x10^{-23})
Human myeloperoxidase (P05164)
β-chain N-terminal (truncation variant)

\[\text{277}^{TVGCETSCVQQPPCFPLKIPPNDPR} \] (identification confidence level, PEP 2D: \(8.7\times10^{-14}\))
Human myeloperoxidase (P05164)

β-chain N-termini (truncation variant)

\[^{278} \text{GVNCETSCVQQPPCFPLKIPPNDPR} \] (identification confidence level, PEP 2D: \(1.1 \times 10^{-15}\))
Human myeloperoxidase (P05164)

β-chain N-terminal (truncation variant)

$^{279}VNCETSCVQQPPCFPLKIPPNDPR$ (identification confidence level, PEP 2D: 1.5×10^{-17})

G.VNC[+57]ETSC[+57]VQQPPC[+57]FPLKIPPNDPR. I z=2, scan# = 44243, scan time = 69.6922
Human myeloperoxidase (P05164)

β-chain C-terminal

DFVNCSTLPALNASWREAS745 (identification confidence level, PEP 2D: 1.4×10^{-8})

R. DFVN$^{[+876]}$C$^{[+57]}$STLPALNASWREAS. - z=3, scan # = 62968, scan time = 87.0878
Supplementary Data S3A

Manually annotated reversed phase-LC-ESI-HCD-MS/MS (+) spectra of all glycosylated and non-glycosylated peptides containing Asn323 identified from the analysis of the unenriched peptide mixtures of nMPO.
Human myeloperoxidase (P05164)
SCPACPGSNITIR (Asn323 peptide)

Obs. m/z 716.83 (2+)
Obs. $[\text{M+H}]^+$ = 1432.66 Da
Calc. $[\text{M+H}]^+$ = 1432.66 Da
RT: 42 min

Non-glycosylated peptide
Human myeloperoxidase (P05164)
SCPACPGS\textit{NITIR} (Asn323 peptide)

Obs. \(m/\zeta\) 818.32 (2+)
Glycan: 203.07 Da (GlcNAc\textsubscript{1})
Obs. \([\text{M+H}]^+\) = 1635.64 Da
Calc. \([\text{M+H}]^+\) = 1635.74 Da
RT: 42 min

Glycoform #1

SCPACPGS\textit{NITIR}

\begin{align*}
\text{b}_2^{1+} & = 248.07 \\
\text{b}_3^{1+} & = 301.13 \\
\text{b}_4^{1+} & = 329.13 \\
\text{y}_7^{1+} & = 345.12 \\
\text{y}_8^{1+} & = 416.16 \\
\text{y}_9^{1+} & = 530.79 \\
\text{y}_10^{1+} & = 610.80 \\
\text{y}_11^{1+} & = 694.85 \\
\text{y}_12^{1+} & = 840.46 \\
\text{y}_13^{1+} & = 906.49 \\
\text{y}_14^{1+} & = 1017.51 \\
\text{y}_15^{1+} & = 1100.55 \\
\text{y}_16^{1+} & = 1185.61 \\
\text{y}_17^{1+} & = 1220.60 \\
\text{y}_18^{1+} & = 1388.66 \\
\end{align*}
Human myeloperoxidase (P05164)
SCPACPGSNITIR (Asn323 peptide)
Obs. m/z 891.36 (2+)
Glycan: 349.14 Da (GlcNAc1Fuc1)
Obs. [M+H]+ = 1781.72 Da
Calc. [M+H]+ = 1781.80 Da
RT: 41 min
Human myeloperoxidase (P05164)
SCPACPGSNITIR (Asn323 peptide)
Obs. m/z 919.91 (2+)
Glycan: 406.15 Da (GlcNAc$_2$)
Obs. $[M+H]^+$ = 1838.84 Da
Calc. $[M+H]^+$ = 1838.83 Da
RT: 42 min
Human myeloperoxidase (P05164) SCPACPGS\textbf{NITIR} (Asn323 peptide)

Obs. m/z 992.95 (2+)

Glycan: 552.22 Da (GlcNAc$_2$Fuc$_1$)

Obs. [M+H]$^+$ = 1984.90 Da
Calc. [M+H]$^+$ = 1984.88 Da

RT: 42 min

Glycoform #4

\begin{align*}
\text{SCPACPGS} & \text{NITIR} \\
& \text{y}_8^{1+} + \text{GlcNAc} \\
& \text{y}_{11}^{1+} + \text{GlcNAc} \\
& \text{y}_{11}^{1+} + \text{GlcNAc}_2\text{Fuc}_1
\end{align*}
Human myeloperoxidase (P05164)
SCPACPGS\textsubscript{NITIR} (Asn323 peptide)
Obs. \textit{m/z} 1000.93 (2+)
Glycan: 568.21 Da (GlcNAc\textsubscript{2}Hex\textsubscript{1})
Obs. [M+H]+ = 2000.86 Da
Calc. [M+H]+ = 2000.88 Da
RT: 42 min
Human myeloperoxidase (P05164)
SCPACPGS\text{NITIR} (Asn323 peptide)
Obs. \(m/z\) 1073.97 (2+)
Glycan: 714.27 Da (GlcNAc\text{2}Hex\text{1}Fuc\text{1})
Obs. [M+H]\(^+\) = 2146.94 Da
Calc. [M+H]\(^+\) = 2146.94 Da
RT: 42 min
Human myeloperoxidase (P05164)
SCPACPGS\textit{NITIR} (Asn323 peptide)

Obs. \(m/z\) 1081.98 (2+)
Glycan: 730.26 Da (GlcNAc\textsubscript{2}Hex\textsubscript{2})
Obs. \([M+H]^+\) = 2162.96 Da
Calc. \([M+H]^+\) = 2162.93 Da

RT: 40 min
Human myeloperoxidase (P05164)
SCPACPGSNITIR (Asn323 peptide)
Obs. m/z 1155.49 (2+)
Glycan: 876.32 Da (GlcNAc₂Hex₂Fuc₁)
Obs. [M+H]⁺ = 2308.98 Da
Calc. [M+H]⁺ = 2308.99 Da
RT: 42 min

Glycoform #8
SCPACPGSNITIR

Obs. m/z 1155.49 (2+)
Glycan: 876.32 Da (GlcNAc₂Hex₂Fuc₁)
Obs. [M+H]⁺ = 2308.98 Da
Calc. [M+H]⁺ = 2308.99 Da
RT: 42 min
Human myeloperoxidase (P05164)
SCPACPGSNITIR (Asn323 peptide)
Obs. \(m/z \) 775.64 (3+)
Glycan: 892.3172 Da (\(\text{GlcNAc}_2\text{Hex}_3 \))
Obs. \([\text{M+H}]^+ = 2324.92 \) Da
Calc. \([\text{M+H}]^+ = 2324.98 \) Da
RT: 39 min
Human myeloperoxidase (P05164)
SCPACPGS\text{N}ITIR (Asn323 peptide)
Obs. \(m/z \) 1236.03 (2+)
Glycan: 1038.38 Da (GlcN_{2}Hex_{3}Fuc_{1})
Obs. [M+H]\(^{+}\) = 2471.06 Da
Calc. [M+H]\(^{+}\) = 2471.04 Da
RT: 42 min
Human myeloperoxidase (P05164)
SCPACPGS\textbf{N}ITIR (Asn323 peptide)

Obs. \(m/z \) 1244.02 (2+)
Glycan: 1054.37 Da (GlcNAc\textsubscript{2}Hex\textsubscript{4})

Obs. \([M+H]^+ = 2487.04 \text{ Da}\)
Calc. \([M+H]^+ = 2487.04 \text{ Da}\)

RT: 42 min
Human myeloperoxidase (P05164)
SCPACPGSNITIR (Asn323 peptide)
Obs. m/z 884.03 (3+)
Glycan: 1216.4 Da (GlcNAc$_2$Hex$_5$)
Obs. [M+H]$^+$ = 2650.09 Da
Calc. [M+H]$^+$ = 2649.09 Da
Off-by-X (Byonic) : 1
RT: 40 min
Human myeloperoxidase (P05164)
SCPACPGSNITIR (Asn323 peptide)
Obs. m/z 937.37 (3+)
Glycan: 1378.48 Da (GlcNAc$_2$Hex$_6$)
Obs. [M+H]$^+$ = 2810.11 Da
Calc. [M+H]$^+$ = 2811.14 Da
Off-by-X (manual) : -1
RT: 40 min
Human myeloperoxidase (P05164)
SCPACPGS\textit{NITIR} (Asn323 peptide)
Obs. m/z 1487.60 (2+)
Glycan: 1540.53 Da (GlcNAc$_2$Hex$_7$)
Obs. [M+H]$^+$ = 2974.20 Da
Calc. [M+H]$^+$ = 2973.20 Da
Off-by-X (manual) : 1
RT: 40 min
Human myeloperoxidase (P05164)
SCPACPGSNITIR (Asn323 peptide)
Obs. m/z 1527.08 (2+)
Glycan: 1700.528 Da \((\text{GlcNAc}_2\text{Hex}_7\text{Phos}_1)\)
Obs. \([\text{M+H}]^+\) = 3053.16 Da
Calc. \([\text{M+H}]^+\) = 3053.20 Da
RT: 41 min
Human myeloperoxidase (P05164)
SCPACPGSN\textbf{N}ITIR (Asn323 peptide)
Obs. m/z 1567.57 (2+)
Glycan: 1700.53 Da (GlcNAc$_2$Hex$_7$Phos$_2$)
Obs. $[M+H]^+ = 3134.14$ Da
Calc. $[M+H]^+ = 3133.20$ Da
Off-by-X (manual) : 1
RT: 44 min
Human myeloperoxidase (P05164)
SCPACPGSNITIR (Asn323 peptide)
Obs. m/z 1568.07 (2+)
Glycan: 1702.58 Da (GlcNAc\textsubscript{2}Hex\textsubscript{8})
Obs. [M+H]+ = 3135.14 Da
Calc. [M+H]+ = 3135.25 Da
RT: 40 min
Glycoform #18

Human myeloperoxidase (P05164)
SCPACPGSNITIR (Asn323 peptide)
Obs. \(m/z \) 1000.06 (3+)
Glycan: 1565.56 Da (GlcNAc\(_3\)Hex\(_5\)Fuc\(_1\))
Obs. \([M+H]^+\) = 2998.18 Da
Calc. \([M+H]^+\) = 2998.23 Da
RT: 40 min
Human myeloperoxidase (P05164)
SCPACPGS\textbf{N}ITIR (Asn323 peptide)
Obs. \(m/z \) 994.39 (3+)
Glycan: 1548.55 Da (\(\text{GlcNAc}_3\text{Hex}_4\text{NeuAc}_1 \))
Obs. \([M+H]^+ = 2981.17 \) Da
Calc. \([M+H]^+ = 2981.21 \) Da
RT: 43 min

Glycoform #19
Human myeloperoxidase (P05164)
SCPACPGSNITIR (Asn323 peptide)
Obs. m/z 1563.60 (2+)
Glycan: 1694.6 Da (\(\text{GlcNAc}_3\text{Hex}_4\text{NeuAc}_1\text{Fuc}_1\))
Obs. [M+H]+ = 3126.20 Da
Calc. [M+H]+ = 3127.27 Da
Off-by-X (manual): 1
RT: 44 min
Human myeloperoxidase (P05164)
SCPACPGSNITIR (Asn323 peptide)
Obs. m/z 1110.81 (2+)
Glycan: 1897.68 Da
(GlcNAc$_4$Hex$_4$NeuAc$_1$Fuc$_1$)
Obs. [M+H]$^+$ = 3330.43 Da
Calc. [M+H]$^+$ = 3330.35 Da
RT: 42 min

Glycoform #21

SCPACPGSNITIR
Human myeloperoxidase (P05164)
SCPACPGS\textbf{N}ITIR (Asn323 peptide)
Obs. m/z 1261.84 (3+)
Glycan: 2350.83 Da ($\text{GlcNAc}_4\text{Hex}_5\text{NeuAc}_2\text{Fuc}_1$)
Obs. $[\text{M+H}]^+ = 3783.52$ Da
Calc. $[\text{M+H}]^+ = 3783.50$ Da
RT: 44 min

Glycoform #22
Supplementary Data S3B

Manually annotated reversed phase-LC-ESI-HCD-MS/MS (+) spectra of all glycosylated and non-glycosylated peptides containing Asn355 identified from the analysis of the unenriched peptide mixtures of nMPO.
Human myeloperoxidase (P05164)
NLR\textbf{N}MSNQLGLLLAVNQR (Asn355 peptide)
Obs. m/z 653.33 (3+)
Obs. $[\text{M+H}]^+ = 1957.99$ Da
Calc. $[\text{M+H}]^+ = 1957.04$ Da
RT: 59 min

Non-glycosylated peptide

y_1^{1+} y_2^{1+} y_3^{1+} y_4^{1+} y_5^{1+} y_6^{1+} y_8^{1+} y_9^{1+} b_1^{1+} b_{10}^{1+}
Human myeloperoxidase (P05164)
NLRNMSNQLGLLAVNQR (Asn355 peptide)
Obs. m/z 1080.57 (2+)
Glycan: 203.08 Da (GlcNAc₁)
Obs. [M+H]⁺ = 2160.14 Da
Calc. [M+H]⁺ = 2160.11 Da
RT: 54 min

Glycoform #1

N L R N M S N Q L
y8
G
y7
L L
y5
A
y4
V N
y2
Q
y1
R

y8
175.12
303.18
400.19
516.29
587.39
642.32
813.49
988.54

y7
1+

y5
1+

y4
1+

y3
1+

y2
1+

y1
2+
Glycoform #2

Human myeloperoxidase (P05164)
NLRNMSNQLGLLAVNQR (Asn355 peptide)
Obs. m/z 1182.10 (2+)
Glycan: 406.16 Da (GlcNAc$_2$)
Obs. [M+H]$^+$ = 2363.20 Da
Calc. [M+H]$^+$ = 2363.20 Da
RT: 56 min
Human myeloperoxidase (P05164)
NLRNMSNQLGLLAVNQR (Asn355 peptide)
Obs. m/z 842.76 (3+)
Glycan: 568.21 Da (GlcNAc$_2$Hex$_1$)
Calc. [M+H]$^+$ = 2525.25 Da
Off-by-X (Manual) : 1
RT: 53 min
Human myeloperoxidase (P05164)
NLRNMSNQLGLLAVNQR (Asn355 peptide)
Obs. m/z 896.44 (3+)
Glycan: 730.26 Da (GlcNAc$_2$Hex$_2$)
Obs. [M+H]$^+$ = 2687.32 Da
Calc. [M+H]$^+$ = 2687.30 Da
RT: 52 min
Human myeloperoxidase (P05164) NLRNMSNQLGLLAVNQR (Asn355 peptide)
Obs. m/z 950.79 (3+)
Glycan: 892.3172 Da (GlcNAc₂Hex₃)
Obs. [M+H]⁺ = 2850.37 Da
Calc. [M+H]⁺ = 2849.36 Da
Off-by-X (manual) : 1
RT: 53 min

Glycoform #5
Human myeloperoxidase (P05164)
NLR\textsubscript{N}M\textsubscript{S}N\textsubscript{Q}L\textsubscript{G}L\textsubscript{L}A\textsubscript{V}N\textsubscript{Q}R (Asn355 peptide)
Obs. \(m/z\) 753.86 (4+)
Glycan: 1054.37 Da (GlcNAc\textsubscript{2}Hex\textsubscript{4})
Obs. \([\text{M+H}]^+ = 3012.44\) Da
Calc. \([\text{M+H}]^+ = 3011.41\) Da
Off-by-X (manual) : 1
RT: 55 min

Glycoform #6

\text{NLRNMSNQLGLLAVNQR}\ (\text{Asn355 peptide})
\text{Obs. \(m/z\) 753.86 (4+)}
\text{Glycan: 1054.37 Da (GlcNAc\textsubscript{2}Hex\textsubscript{4})}
\text{Obs. \([\text{M+H}]^+ = 3012.44\) Da}
\text{Calc. \([\text{M+H}]^+ = 3011.41\) Da}
\text{Off-by-X (manual) : 1}
\text{RT: 55 min}
Human myeloperoxidase (P05164)
NLR
MSNQLGLLAVNQR (Asn355 peptide)

Obs. \(m/z \) 794.37 (4+)
Glycan: 1216.4 Da (GlcNAc\(_2\)Hex\(_5\))
Obs. \([M+H]^+\) = 3174.48 Da
Calc. \([M+H]^+\) = 3173.46 Da
Off-by-X (manual) : 1
RT: 53 min

Glycoform #7

\(Y_1^{2+} \)
\(Y_2^{2+} \)
\(Y_3^{1+} \)
\(Y_4^{1+} \)
\(Y_5^{1+} \)
\(Y_6^{1+} \)
\(Y_7^{1+} \)
\(Y_8^{1+} \)

\(Y_1^{2+} \) + GlcNAc
\(Y_2^{2+} \) + GlcNAc
\(Y_3^{1+} \) + Hex
\(Y_4^{1+} \) + GlcNAc
\(Y_5^{1+} \) + GlcNAc
\(Y_6^{1+} \) + GlcNAc
\(Y_7^{1+} \) + GlcNAc
\(Y_8^{1+} \) + GlcNAc

RT: 53 min
Human myeloperoxidase (P05164)
NLRNMSNQLGLLAVNQR (Asn355 peptide)
Obs. m/z 834.89 (4+)
Glycan: 1378.48 Da (GlcNAc$_2$Hex$_6$)
Obs. [M+H]$^+$ = 3336.56 Da
Calc. [M+H]$^+$ = 3335.51 Da
Off-by-X (manual) : 1
RT: 53 min

Glycoform #8

\[
\text{NLRNMSNQLGLLAVNQR}
\]

\[
y_8 \quad y_7 \quad y_6 \quad y_5 \quad y_4 \quad y_3
\]

1080.56
204.09
138.05
145.05
587.33
870.52
1048.56
1080.56
145.05
587.33
870.52
1048.56

RT: 53 min
Human myeloperoxidase (P05164)
NLRNMSNQLGLLAVNQR (Asn355 peptide)

Obs. \(m/z \) 875.65 (+4)
Glycan: 1540.53 Da (GlcNAc\(_7\)Hex\(_7\))
Obs. \([M+H]^+\) = 3499.6 Da
Calc. \([M+H]^+\) = 3497.57 Da
Off-by-X (manual) : 2
RT: 53 min

Glycoform #9

Y\(_1^{2+}\) 1081.06
Y\(_2^{1+}\) 204.09
Y\(_3^{1+}\) 303.16
Y\(_4^{1+}\) 366.14
Y\(_5^{1+}\) 587.33
Y\(_6^{1+}\) 700.41
Y\(_7^{1+}\) 913.50
Y\(_8^{1+}\) 1049.06

Y\(_1^{2+}\) + GlcNAc
Hex
Y\(_2^{1+}\) + GlcNAc
Hex\(_2\)
Y\(_3^{1+}\) + GlcNAc
Hex\(_3\)

RT: 53 min
Glycoform #10

NLR\text{\textsuperscript{\text{N}}}M\text{\textsuperscript{\text{S}}}N\text{\textsuperscript{\text{Q}}}L\text{\textsuperscript{\text{G}}}L\text{\textsuperscript{\text{L}}}A\text{\textsuperscript{\text{V}}}N\text{\textsuperscript{\text{Q}}}R

RT: 53 min

Human myeloperoxidase (P05164)
NLR\text{\textsuperscript{\text{N}}}M\text{\textsuperscript{\text{S}}}N\text{\textsuperscript{\text{Q}}}L\text{\textsuperscript{\text{G}}}L\text{\textsuperscript{\text{L}}}A\text{\textsuperscript{\text{V}}}N\text{\textsuperscript{\text{Q}}}R (Asn355 peptide)

Obs. \textit{m/z} 1221.21 (3+)
Glycan: 1702.58 Da (GlcNAc\textsubscript{2}Hex\textsubscript{8})
Obs. [M+H]+ = 3661.63 Da
Calc. [M+H]+ = 3659.62 Da
Off-by-X (manual) : 2
RT: 53 min
Supplementary Data S3C

Manually annotated reversed phase-LC-ESI-HCD-MS/MS (+) spectra of all glycosylated and non-glycosylated peptides containing Asn391 identified from the analysis of unenriched peptide mixtures of nMPO.
Human myeloperoxidase (P05164)
ALLPFDNLHDDPCLLTNR (Asn391 peptide)
Obs. m/z 708.69 (+3)
Obs. $[M+H]^+$ = 2124.07 Da
Calc. $[M+H]^+$ = 2124.05 Da
RT: 81 min

Non-glycosylated peptide

ALLPFDNLHDDPCLLTNR

Obs. m/z 708.69 (+3)
Obs. $[M+H]^+$ = 2124.07 Da
Calc. $[M+H]^+$ = 2124.05 Da
RT: 81 min
Human myeloperoxidase (P05164)
ALLPFDNLHDDPCLLTN\(\text{N}\)R (Asn391 peptide)
Obs. \(m/z\) 1164.03 (2+)
Glycan: 203.08 Da (GlcNAc\(_1\))
Obs. [M+H]\(^+\) = 2327.06 Da
Calc. [M+H]\(^+\) = 2327.13 Da
RT: 75 min

Glycoform #1
Human myeloperoxidase (P05164)
ALLPFDNLHDDPCLLTNR (Asn391 peptide)
Obs. m/z 844.03 (3+)
Glycan: 406.16 Da (GlcNAc$_2$)
Obs. [M+H]$^+$ = 2530.09 Da
Calc. [M+H]$^+$ = 2530.21 Da
RT: 80 min
Human myeloperoxidase (P05164)
ALLPFDNLHDDPCLLTNR (Asn391 peptide)
Obs. m/z 898.09 (3+)
Glycan: 568.21 Da (GlcNAc₂Hex₁)
Obs. [M+H]+ = 2692.18 Da
Calc. [M+H]+ = 2692.26 Da
RT: 77 min
Human myeloperoxidase (P05164)
ALLPFDNLHDDPCLLT\textsubscript{N}R (Asn391 peptide)
Obs. m/z 952.45 (3+)
Glycan: 730.26 Da (GlcNAc$_2$Hex$_2$)
Obs. [M+H]$^+$ = 2855.35 Da
Calc. [M+H]$^+$ = 2854.31 Da
Off-by-X (manual) : 1
RT: 78 min

Glycoform #4
Human myeloperoxidase (P05164)
ALLPFDNLHDDPCLLTNR (Asn391 peptide)
Obs. m/z 1000.79 (3+)
Glycan: 876.32 Da (GlcNAc$_2$Hex$_2$Fuc$_1$)
Obs. [$M+H]^+ = 3000.37$ Da
Calc. [$M+H]^+ = 3000.37$ Da
RT: 77 min

Glycoform #5

A L L P F D N L | H D D | P C L L T N R

y_7^{1+} +
GlcNAc

y_7^{1+}

Y_1^{2+}
Human myeloperoxidase (P05164)
ALLPFDNLHDDPCLLTNR (Asn391 peptide)
Obs. m/z 1006.46 (3+)
Glycan: 892.3172 Da (GlcNAc$\textsubscript{2}$Hex$\textsubscript{3}$)
Obs. [M+H]$^+$ = 3017.38 Da
Calc. [M+H]$^+$ = 3016.37 Da
Off-by-X (manual) : 1
RT: 76 min

Glycoform #6

\[
\begin{align*}
\text{ALLPFDNLHDDPCLLT}&\text{NR} \\
y_3^{1+} + \text{GlcNAc} &
y_4^{1+} + \text{GlcNAc} &
y_7^{1+} + \text{GlcNAc} \\
&
\end{align*}
\]
Human myeloperoxidase (P05164)
ALLPFDNLHDDPCLLTNR (Asn391 peptide)
Obs. \(m/z \) 1054.87 (3+)
Glycan: 1038.38 Da (GlcNAc\(_2\)Hex\(_3\)Fuc\(_1\))
Obs. \([M+H]^+\) = 3162.61 Da
Calc. \([M+H]^+\) = 3162.43 Da
RT: 79 min

Glycoform #7

\[
\text{ALLPFDNLHDDPCLLTNR}
\]

\(y_{10}^{+1} + \text{GlcNAc}\)
\(y_{7}^{+1} + \text{GlcNAc}\)
\(y_{4}^{+1} + \text{GlcNAc}\)
Human myeloperoxidase (P05164)
ALLPFDNLHDDPCLLTNR (Asn391 peptide)
Obs. m/z 1589.72 (2+)
Glycan: 1054.37 Da (GlcNAc$_2$Hex$_4$)
Obs. [M+H]$^+$ = 3178.44 Da
Calc. [M+H]$^+$ = 3178.42 Da
RT: 77 min

Glycoform #8

\[\gamma_7^{1+} + \text{GlcNAc} \]

\[\gamma_{10}^{1+} + \text{GlcNAc} \]

\[\gamma_{11}^{1+} + \text{GlcNAc} \]

\[\gamma_{12}^{1+} + \text{GlcNAc} \]

\[\gamma_{15}^{1+} + \text{GlcNAc} \]

\[\gamma_{1}^{1+} \]
Human myeloperoxidase (P05164)

ALLPFDNLHDDPCLLTN (Asn391 peptide)

Obs. m/z 1108.49 (3+)

Glycan: 1221.46 Da (GlcNAc$_2$Hex$_4$Fuc$_1$)

Obs. $\left[M+H\right]^+ = 3323.47$ Da

Calc. $\left[M+H\right]^+ = 3324.48$ Da

Off-by-X (manual) : 1

RT: 80 min

Glycoform #9

γ_{y10}^{1+} + GlcNAc

γ_{y7}^{1+} + GlcNAc

γ_{y4}^{1+} + GlcNAc

γ_{y3}^{1+} + GlcNAc

γ_{y10}^{1+} + GlcNAc
Human myeloperoxidase (P05164)

ALLPFDNLHDDPCLLTNR (Asn391 peptide)

Obs. \(m/z \) 1671.23 (2+)

Glycan: 1216.42 Da (GlcNAc\(_2\)Hex\(_5\))

Obs. \([M+H]^+\) = 3341.46 Da

Calc. \([M+H]^+\) = 3340.47 Da

Off-by-X (manual) : 1

RT: 76 min
Human myeloperoxidase (P05164)
ALLPFDNLHDDPCLLT\textbf{N}R (Asn391 peptide)
Obs. \textit{m/z} 1162.84 (3+)
Glycan: 1362.48 Da (Glc\textit{N}Ac$_2$\textit{Hex}_5\textit{Fuc}_1$
Obs. [M+H]$^+$ = 3486.52 Da
Calc. [M+H]$^+$ = 3486.53 Da
RT: 80 min
Human myeloperoxidase (P05164)
ALLPFDNLHDDPCLLTNR (Asn391 peptide)
Obs. m/z 1168.85 (3+)
Glycan: 1378.48 Da (GlcNAc$_2$Hex$_6$)
Obs. [M+H]$^+$ = 3504.55 Da
Calc. [M+H]$^+$ = 3502.53 Da
Off-by-X (manual) : 2
RT: 77 min

Glycoform #12
ALLPFDNLHDDPCLLTNR

RT: 76.90 AV: 1 NL: 8.76E6
T: FTMS + p NSI d Full ms2 1168.8485@hcd30.00 [110.0000-3595.0000]
Human myeloperoxidase (P05164) ALLPFDNLHDDPCLLTNR (Asn391 peptide) Obs. m/z 1222.87 (3+)
Glycan: 1540.53 Da (GlcNAc$_2$Hex$_7$) Obs. [M+H]$^+$ = 3666.61 Da Calc. [M+H]$^+$ = 3664.59 Da Off-by-X (manual) : 2 RT: 74 min
Human myeloperoxidase (P05164)
ALLPFDNLHDDPCLLTNR (Asn391 peptide)
Obs. \(m/z \) 1276.89 (3+)
Glycan: 1702.58 Da (GlcNAc\(_2\)Hex\(_8\))
Obs. \([M+H]^+ = 3828.67 \text{ Da}
Calc. \([M+H]^+ = 3826.63 \text{ Da}
Off-by-X (manual) : 2
RT: 74 \text{ min}

Glycoform #14

\[\text{ALL}[PFDNLHDDPCLLTNR}\]

\(Y_7^{1+} + \text{GlcNAc}\)
\(1164.57\)
\(Y_{10}^{1+} + \text{GlcNAc}\)
\(1251.60\)
\(Y_{12}^{1+} + \text{GlcNAc}\)
\(1443.65\)
\(Y_{15}^{1+}\)
\(2030.90\)
Human myeloperoxidase (P05164)
ALLPFDNLHDDPCLLTNR (Asn391 peptide)
Obs. m/z 1225.21 (3+)
Glycan: 1548.55 Da (GlcNAc₃Hex₄NeuAc₁)
Obs. [M+H]⁺ = 3673.63 Da
Calc. [M+H]⁺ = 3672.59 Da
Off-by-x (manual) : 1
RT: 79 min

Glycoform #15

\[\text{ALLPFDNLHDDPCLLTNR} \]
Human myeloperoxidase (P05164)
ALLPFDNLHDDPCLLTNR (Asn391 peptide)
Obs. m/z 1279.56 (3+)
Glycan: 1710.60 Da (GlcNAc$_3$Hex$_5$NeuAc$_1$)
Obs. [M+H]$^+$ = 3836.68 Da
Calc. [M+H]$^+$ = 3834.65 Da
Off-by-X (manual) : 2
RT: 78 min

Glycoform #16

A L L
y$_{15}$
P F D N L H D D P C L L T N R

y$_1^{1+}$ + GlcNAc

y$_1^{2+}$ + GlcNAc
Human myeloperoxidase (P05164)
ALLPFDNLHDDPCLLTNR (Asn391 peptide)
Obs. \(m/z \) 1333.58 (3+)
Glycan: 1872.65 Da (GlcNAc\(_3\)Hex\(_6\)NeuAc\(_1\))
Obs. \([M+H]^+ = 3998.74\) Da
Calc. \([M+H]^+ = 3996.70\) Da
Off-by-X (Manual) : 2
RT: 78 min
Human myeloperoxidase (P05164)
ALLPFDNLHDDPCLLTNR (Asn391 peptide)
Obs. m/z 1298.91 (3+)
Glycan: 1768.64 Da (GlcNAc$_4$Hex$_5$Fuc$_1$)
Obs. [M+H]$^+ = 3894.73$ Da
Calc. [M+H]$^+ = 3892.69$ Da
Off-by-X (manual) : 2
RT: 74 min
Supplementary Data S3D

Manually annotated reversed phase-LC-ESI-HCD-MS/MS (+) spectra of all glycosylated and non-glycosylated peptides containing Asn483 identified from the analysis of the unenriched peptide mixtures of nMPO.
Human myeloperoxidase (P05164)
SYNDSVDPR (Asn483 peptide)
Obs. m/z 964.89 (2+)
Glycan: 897.35 Da (GlcNAc₂Hex₂Fuc₁)
Obs. [M+H]⁺ = 1928.79 Da
Calc. [M+H]⁺ = 1928.79 Da
RT: 28 min
Human myeloperoxidase (P05164)
SYNDSVDPR (Asn483 peptide)
Obs. \(m/z \) 972.89 (2+)
Glycan: 913.35 Da (GlcNAc\(_2\)Hex\(_3\))
Obs. \([M+H]^+\) = 1944.78 Da
Calc. \([M+H]^+\) = 1944.78 Da
RT: 27 min
Human myeloperoxidase (P05164)
SYN\(NdSVDPR\) (Asn483 peptide)
Obs. \(m/z\) 1045.92 (2+)
Glycan: 1059.40 Da (GlcNAc\(_2\)Hex\(_3\)Fuc\(_1\))
Obs. \([M+H]^+\) = 2090.84 Da
Calc. \([M+H]^+\) = 2090.83 Da
RT: 28 min
Human myeloperoxidase (P05164)
SYNDSDVPR (Asn483 peptide)
Obs. m/z 1126.89 (2+)
Glycan: 1221.46 Da (GlcNAc$_2$Hex$_4$Fuc$_1$)
Obs. [M+H]$^+$ = 2252.78 Da
Calc. [M+H]$^+$ = 2252.89 Da
RT: 27 min
Human myeloperoxidase (P05164)

SYNSVDPR (Asn483 peptide)

Obs. m/z 1135.45 (2+)

Glycan: 1216.423 Da (GlcNAc$_2$Hex$_5$)

Obs. [M+H]$^+$ = 2269.90 Da

Calc. [M+H]$^+$ = 2268.89 Da

Off-by-X (manual) : 1

RT: 25 min
Human myeloperoxidase (P0516)

SY
N
D
S
V
D
P
R
(Asn483 peptide)

Glycoform #6

Obs. m/z 1208.48 (2+)

Glycan: 1362.481 Da (GlcNAc₂Hex₅Fuc₁)

Obs. [M+H]^+ = 2415.96 Da

Calc. [M+H]^+ = 2414.95 Da

Off-by-X (manual) : 1

RT: 27 min
Human myeloperoxidase (P05164)
SYNDSVDPR (Asn483 peptide)
Obs. \(m/z \) 1147.46 (2+)
Glycan: 1241.46 Da (GlcNAc\(_3\)Hex\(_3\)Fuc\(_1\))
Obs. \([M+H]^+\) = 2293.92 Da
Calc. \([M+H]^+\) = 2293.92 Da
RT: 27 min
Human myeloperoxidase (P05164)
SYNDSVDPR (Asn483 peptide)
Obs. m/z 1374.04 (2+)
Glycan: 1694.6 Da
(GlcNAc$_3$Hex$_4$Fuc$_1$NeuAc$_1$)
Obs. [M+H]$^+$ = 2747.08 Da
Calc. [M+H]$^+$ = 2747.06 Da
RT: 29 min
Human myeloperoxidase (P05164) SYNSVDSPR (Asn483 peptide)
Obs. m/z 1024.39 (3+)
Glycan: 2039.74 Da (GlcNAc$_3$Hex$_6$Fuc$_1$NeuAc$_1$)
Obs. [M+H]$^+$ = 3071.17 Da
Calc. [M+H]$^+$ = 3071.17 Da
RT: 28 min
Human myeloperoxidase (P05164)
SYNDSVDPR (Asn483 peptide)
Obs. m/z 1249.50 (2+)
Glycan: 1444.53 Da
(GlcNAc$_4$Hex$_3$Fuc$_1$)
Obs. [M+H]$^+$ = 2498.00 Da
Calc. [M+H]$^+$ = 2497.00 Da
Off-by-X (manual): 1
RT: 27 min
Human myeloperoxidase (P05164)
SYNDSVDPR (Asn483 peptide)
Obs. m/z 1038.41 (+3)
Glycan: 2059.74 Da
(GlcNAc$_4$Hex$_5$Fuc$_1$NeuAc$_1$)
Obs. [M+H]$^+$ = 3113.23 Da
Calc. [M+H]$^+$ = 3112.20 Da
Off-by-X (manual): 1
RT: 28
Human myeloperoxidase (P05164)
SYNDSVDPR (Asn483 peptide)
Obs. m/z 984.39 (+3)
Glycan: 1897.62 Da
(GlcNAc$_4$Hex$_4$Fuc$_1$NeuAc$_1$)
Obs. [M+H]$^+$ = 2951.17 Da
Calc. [M+H]$^+$ = 2950.15 Da
Off-by-X (manual) : 1
RT: 28 min
Supplementary Data S3E

Manually annotated reversed phase-LC-ESI-HCD-MS/MS (+) spectra of all glycosylated and non-glycosylated peptides containing Asn729 identified from the analysis of unenriched peptide mixtures of nMPO.
Human myeloperoxidase (P05164)
DFVNCSTLPALNLASWR (Asn729 peptide)
Obs. m/z 982.99 (2+)
Obs. [M+H]^+ = 1964.98 Da
Calc. [M+H]^+ = 1963.95 Da
Off-by-X (manual) : 1
RT: 93 min

Non-glycosylated peptide
Human myeloperoxidase (P05164)
DFV\textbf{N}CSTLPALNLASWR (Asn729 peptide)
Obs. \(m/z \) 1084.53 (2+)
Glycan: 203.08 Da (GlcNAc\(_1\))
Obs. \([M+H]^+\) = 2168.06 Da
Calc. \([M+H]^+\) = 2167.03 Da
Off-by-X (manual) : 1
RT: 91 min

Glycoform #1

\begin{align*}
\text{Obs.} \quad \text{m/z} & \quad 1084.03 \\
\text{Calc.} \quad \text{m/z} & \quad 1085.03 \\
\text{Off} & \quad \text{by} \\
\text{X} (\text{manual}) & \quad 1
\end{align*}
Human myeloperoxidase (P05164)
DFVNCSTLPALNLASWR (Asn729 peptide)
Obs. m/z 1157.56 (2+)
Glycan: 349.14 Da (GlcNAc1Fuc1)
Obs. [M+H]+ = 2314.12 Da
Calc. [M+H]+ = 2313.09 Da
Off-by-X (manual) : 1
RT: 91 min
Human myeloperoxidase (P05164)
DFVNCSTLPALNLASWR (Asn729 peptide)
Obs. \(m/z \) 1185.57 (2+)
Glycan: 406.15 Da (GlcNAc\(_2\))
Obs. \([\text{M}+\text{H}]^+\) = 2370.14 Da
Calc. \([\text{M}+\text{H}]^+\) = 2370.11 Da
RT: 90 min

Glycoform #3

\[
\begin{align*}
\text{DFV} & \quad \text{N} \\
\text{C} & \quad \text{S} \\
\text{T} & \quad \text{L} \\
\text{P} & \quad \text{A} \\
\text{L} & \quad \text{N} \\
\text{L} & \quad \text{A} \\
\text{S} & \quad \text{W} \\
\text{R} & \quad \\
\end{align*}
\]
Human myeloperoxidase (P05164)
DFVNCSTLPALNLASWR (Asn729 peptide)
Obs. m/z 1259.10 (2+)
Glycan: 552.22 Da (GlcNAc$_2$Fuc$_1$)
Obs. [M+H]$^+$ = 2517.20 Da
Calc. [M+H]$^+$ = 2516.17 Da
Off-by-X (manual) : 1
RT: 89 min

Glycoform #4
Human myeloperoxidase (P05164)
DFV\text{N}CSTLPALNLASWR (Asn729 peptide)
Obs. \textit{m/z} 1267.1 (2+)
Glycan: 568.21 Da (GlcNAc$_2$Hex$_1$)
Obs. [M+H]$^+$ = 2533.20 Da
Calc. [M+H]$^+$ = 2532.16 Da
Off-by-X (Manual) : 1
RT: 90 min

Glycoform #5

\text{DFV\text{N}CSTLPALNLASWR}
Human myeloperoxidase (P05164)

DFVN CSTLPALNLASWR (Asn729 peptide)

Obs. m/z 893.75 (3+)

Glycan: 714.27 Da (GlcNAc₂Man₁Fuc₁)

Obs. [M+H]⁺ = 2679.25 Da

Calc. [M+H]⁺ = 2678.22 Da

Off-by-X (manual) : 1

RT: 89 min

Glycoform #6
Human myeloperoxidase (P05164)

DFVNCSTLPALNLASWR (Asn729 peptide)

Obs. m/z 899.09 (3+)

Glycan: 730.26 Da ($\text{GlcNAc}_2\text{Hex}_2$)

Obs. $[\text{M+H}]^+ = 2695.27$ Da

Calc. $[\text{M+H}]^+ = 2694.21$ Da

Off-by-X (manual): 1

RT: 88 min
Human myeloperoxidase (P05164)
DFVN\text{CSTLPALNLASWR} (Asn729 peptide)
Obs. \textit{m/z} 947.77 (3+)
Glycan: 876.32 Da (GlcNAc$_2$Hex$_2$Fuc$_1$)
Obs. [M+H]$^+$ = 2841.31 Da
Calc. [M+H]$^+$ = 2840.27 Da
Off-by-X (manual): 1
RT: 89 min

Glycoform #8
Human myeloperoxidase (P05164)

DFVNCSTLPALNLASWR (Asn729 peptide)

Obs. \textit{m/z} 953.44 (3+)

Glycan: 892.3172 Da (GlcNA\textsubscript{c2}Hex\textsubscript{3})

Obs. [M+H]+ = 2858.32 Da

Calc. [M+H]+ = 2856.27 Da

Off-by-X (manual) : 1

RT: 88 min
Human myeloperoxidase (P05164)

DFVNCSTLPALNLASWR (Asn729 peptide)

Obs. m/z 1001.79 (3+)

Glycan: 1038.38 Da (GlcNAc$_2$Hex$_3$Fuc$_1$)

Obs. [M+H]$^+$ = 3003.37 Da

Calc. [M+H]$^+$ = 3002.33 Da

Off-by-X (manual) : 1

RT: 87 min
Human myeloperoxidase (P05164)
DFVN{N}CSTLPALNLASWR (Asn729 peptide)
Obs. m/z 1510.67 (2+)
Glycan: 1054.37 Da (GlcNAc\textsubscript{2}Hex\textsubscript{4})
Obs. [M+H]+ = 3020.34 Da
Calc. [M+H]+ = 3018.32 Da
Off-by-X (manual) : 2
RT: 87 min
Human myeloperoxidase (P05164)
DFVNCSTLPALNLASWR (Asn729 peptide)
Obs. m/z 1055.81 (3+)
Glycan: 1221.46 Da (GlcNAc₂Hex₄Fuc₁)
Obs. [M+H]⁺ = 3165.43 Da
Calc. [M+H]⁺ = 3164.38 Da
Off-by-X (manual) : 1
RT: 87 min

Glycoform #12

D F
b₂
V
y₁₄
N
y₁₃
C
y₁₂
b₅
S
y₁₁
T
y₁₀
L
y₉
P
y₈
A
y₇
L
y₆
N L
y₄
A
y₃
S W R
Human myeloperoxidase (P05164)
DFVNCSTLPALNLASWR (Asn729 peptide)
Obs. \(m/z \) 1061.48 (3+)
Glycan: 1216.4 Da (GlcNAc\(_2\)Hex\(_5\))
Obs. [M+H]\(^+\) = 3182.44 Da
Calc. [M+H]\(^+\) = 3180.37 Da
Off-by-X (manual) : 2
RT: 87 min

Glycoform #13

\[
\text{DFVNCSTLPALNLASWR}
\]
Human myeloperoxidase (P05164)
DFVNCSTLPALNLASWR (Asn729 peptide)
Obs. m/z 1664.73 (2+)
Glycan: 1362.481 Da (GlcNAc$_2$Hex$_5$Fuc$_1$)
Obs. [M+H]$^+$ = 3328.46 Da
Calc. [M+H]$^+$ = 3326.43 Da
Off-by-X (manual) : 2
RT: 87 min

Glycoform #14

D F V N
b$_2$
V N
y$_{13}$
C
y$_{12}$
b$_5$
S T
y$_{10}$
L
y$_9$
P A
y$_7$
L
y$_6$
N L A
y$_3$
S W R
Human myeloperoxidase (P05164)
DFV\text{N}CSTLPALNLASWR (Asn729 peptide)
Obs. \textit{m/z} 1115.50 (3+)
Glycan: 1378.48 Da (GlcNAc\textsubscript{2}Hex\textsubscript{6})
Obs. [M+H]+ = 3344.50 Da
Calc. [M+H]+ = 3342.43 Da
Off-by-X (manual) : 2
RT: 87 min

Glycoform #15
Human myeloperoxidase (P51064)
DFVN\text{CSTLPALNLASWR} (Asn729 peptide)
Obs. \(m/z \) 1220.53 (3+)
Glycan: 1694.6 Da (GlcNAc\textsubscript{3}Hex\textsubscript{4}NeuAc\textsubscript{1}Fuc\textsubscript{1})
Obs. [M+H]\(^+\) = 3659.59 Da
Calc. [M+H]\(^+\) = 3658.55 Da
Off-by-X (manual): 1
RT: 88 min